Liquidity premium in CDS markets

by Merlin KUATE KAMGA and Christian WILDE

6th Financial Risks International Forum,
Liquidity Risk,
Outline

1. Motivation
2. Model
3. Data
4. Calibration results
5. Conclusion
Outline

1. Motivation
2. Model
3. Data
4. Calibration results
5. Conclusion
Motivation 1

Previous literature on liquidity in credit markets

- **No liquidity premium in CDS markets**
 Longstaff, Mithal, and Neis (2005)

- **Liquidity risk in CDS markets, but no estimation of the liquidity premium**
 Tang and Yan (2007)
 Bongaerts, de Jong, and Driessen (2011)

- **Liquidity premium dynamics in reduced-form models: uncorrelated risk factors**
 Chen, Cheng, and Wu (2008)
 Chen, Fabozzi, and Sverdlove (2010)

- **Liquidity premium dynamics in reduced-form models: correlated risk factors**
 Bühler and Trapp (2010)
Motivation 2

PANEL A: Mid CDS premium (S^{mid})

PANEL B: Bid-ask spread (BA)

PANEL C: Bid-ask spread relative to mid quote (BA^{mid}_{rel})
Objectives and Contributions

- CDS quotes contain liquidity premia
- Strong interlinkage of liquidity and default risk premium
- Allocation of liquidity premium between protection buyers and sellers
- Simple and robust framework
- Investigation of liquidity premium before the financial crisis and in different phases of the financial crisis
- Financial and non-financial institutions
Empirical findings

• Time-varying credit and liquidity risk premia

<table>
<thead>
<tr>
<th></th>
<th>credit</th>
<th>bid-ask</th>
<th>ask liquidity ratio in %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-crisis Phase</td>
<td>34.37</td>
<td>3.56</td>
<td>25.70</td>
</tr>
<tr>
<td>Subprime Phase</td>
<td>70.12</td>
<td>5.21</td>
<td>23.5</td>
</tr>
<tr>
<td>Systemic Phase</td>
<td>178.68</td>
<td>14.83</td>
<td>41.70</td>
</tr>
<tr>
<td>Recovery Phase</td>
<td>103.62</td>
<td>7.85</td>
<td>32.10</td>
</tr>
<tr>
<td>Sovereign Phase</td>
<td>101.30</td>
<td>5.95</td>
<td>43.8</td>
</tr>
</tbody>
</table>

• The larger the credit premium the larger the liquidity premium of protection seller and protection buyer

• Liquidity premium allocated to protection buyers

• Financial institutions on average have a lower credit risk premium than non-financials before the sovereign phase

• Financial institutions on average have a lower liquidity premium than non-financials
Outline

1. Motivation
2. Model
3. Data
4. Calibration results
5. Conclusion
Economy

- **Credit or default premium** S_t^{def}
 \[
 s_t^{def} = \ln(S_t^{def})

 s_{t+1} = s_t + \eta_{t+1}
 \]

- **Ask CDS price** S_t^{ask}
 \[
 s_t^{ask} = \ln(S_t^{ask}) = s_t^{def} + r_t ba_t
 \]

- **Bid CDS price** S_t^{bid}
 \[
 s_t^{bid} = \ln(S_t^{bid}) = s_t^{def} - (1 - r_t) ba_t
 \]

- **Bid-ask spread of logarithmized prices**
 \[
 ba_t^{def} = s_t^{ask} - s_t^{bid}
 \]

- **liquidity state variable**
 \[
 r_t = \alpha + \beta r_{t-1} + \sqrt{(1 - r_{t-1}) r_{t-1}} \epsilon_t, \quad \text{with} \quad 0 \leq \alpha \leq 1, \ -1 \leq \beta \leq 1
 \]
Estimation Equations

- **Observation equation**: changes in log-ask premium

\[
y_t = s_{t}^{ask} - s_{t-1}^{ask} \\
= r_t \Delta_{ba} - r_{t-1} \Delta_{ba_{t-1}} + \eta_t \\
= \begin{bmatrix} \Delta_{ba} & -\Delta_{ba_{t-1}} \end{bmatrix} \begin{bmatrix} r_t \\ r_{t-1} \end{bmatrix} + \eta_t \\
= H_t x_t + \eta_t
\]

- **Transition equation**: liquidity state variables

\[
r_t = \alpha + \beta r_{t-1} + \sqrt{(1 - r_{t-1})} r_{t-1} \epsilon_t \\
x_t = A + F x_{t-1} + \sqrt{(1 - r_{t-1})} r_{t-1} w_t
\]

Merlin KUATE KAMGA and Christian WILDE
State space model

- **Linear dynamic system**

\[
\begin{align*}
y_t &= H_t x_t + \eta_t, \\
x_t &= A + F x_{t-1} + L_{t-1} w_t \\
\eta_t &\sim N(0, \sigma_\eta^2) \\
w_t &\sim N(0, Q) \\
Q &= \begin{bmatrix} \sigma_\epsilon^2 & 0 \\ 0 & 0 \end{bmatrix} \\
M &= \text{Cov} [w_t, \eta_t] = \begin{bmatrix} \rho_\epsilon, \eta \sigma_\epsilon \sigma_\eta & 0 \\ \rho_\epsilon, \eta \sigma_\epsilon \sigma_\eta & 0 \end{bmatrix}
\end{align*}
\]

- **State variable** \(x_t\) is estimated by means of Kalman filter
Parameter Estimation

- **Quasi maximum likelihood**

\[\hat{\Theta} = \arg \max \ln \left(f \left(y_1, \ldots, y_T \right) \right) = -\frac{1}{2} \sum_{t=1}^{T} \left(\ln \left(V_{t+1} \right) + \frac{\left(y_{t+1} - y_{t+1|t} \right)^2}{V_{t+1}} \right) \]

- **Global optimization procedure**

1. \(N = 200 \) initial parameter sets \(\Theta_0^1, \ldots, \Theta_0^N \)
2. For each initial parameter set \(\Theta_0^k, \quad k = 1, \ldots, N \), the Kalman filter generates a time series of \(y_{t+1|t} \) and \(x_{t|t} \)
3. For each \(k = 1, \ldots, N \), search for \(\hat{\Theta}^k \) that maximize the objective function, given \(y_t, y_{t|t-1}, x_{t|t} \quad t = 1, \ldots, T \)
4. Set \(\hat{\Theta} \) equal to \(\hat{\Theta}^k \) with the maximal log-likelihood function
5. Reinitialize the procedure by setting \(\Theta_0^1 = \hat{\Theta} \) and randomly generate \(N - 1 \) parameter sets \(\Theta_0^2, \ldots, \Theta_0^N \) and return to the second step
6. As soon as the parameter estimates \(\hat{\Theta} \) converge, stop the procedure
Outline

1. Motivation
2. Model
3. Data
4. Calibration results
5. Conclusion
Data

- 5 year CDS bid and ask prices
- ranging from January 2004 to September 2010
- 118 names from iTraxx Europe
 - automobile and industry 29
 - consumer and service 26
 - financial 23
 - energy 20
 - telecommunications 20
Outline

1. Motivation
2. Model
3. Data
4. Calibration results
5. Conclusion
Default and liquidity premia

PANEL A: Model-implied CDS premium (S_{\text{def}})

PANEL B: Ask liquidity premium (S_{L,\text{ask}})

PANEL C: Bid liquidity premium (S_{L,\text{bid}})
Ask liquidity ratio
Histogram of ask liquidity ratio

Ask liquidity proportion (R)

- Financial
 - Pre-crisis
- Subprime
- Systemic
- Recovery
- Non-Financial
 - Pre-crisis
- Subprime
- Systemic
- Recovery
- Sovereign

Merlin KUATE KAMGA and Christian WILDE

Liquidity premium in CDS markets
Deviation of estimated credit premium from mid-price

Pre-crisis Subprime Systemic Recovery Sovereign
Outline

1. Motivation
2. Model
3. Data
4. Calibration results
5. Conclusion
Conclusion

- **CDS default premium**
 - Mid-prices underestimate the CDS default risk
 - The default premium increases during the crisis and reaches a maximum in the systemic period
 - Financial institutions have a lower default premium than non-financials
 - Financials have comparatively low default premium during the systemic phase and comparatively large default premium during the sovereign crisis period

- **Liquidity premium**
 - The liquidity premium is mostly allocated to protection buyers
 - The ask liquidity ratio increases significantly during periods of large credit premia
 - Financials exhibit generally lower ask liquidity ratios