These slides present ideas from the authors, which are not necessarily those of the Deutsche Bundesbank.
Motivation I

- **CDS premia are frequently used as the best market-based indicator for credit risk**
 - If the market for credit risk were frictionless, this would be appropriate
 - Early studies: CDS measure pure credit risk since impact of frictions is limited: Norden, Weber (JBF, 2004); Blanco, Brennan, Marsh (JF, 2005); Longstaff, Mithal, Neis (JF, 2005)

- **What if the market is not frictionless?**
 - Option prices exhibit liquidity effects if the underlying is illiquid (Cetin, Jarrow, Protter, Warachka; RFS, 2006)

- **Recent evidence: Frictions matter in CDS market!**
 - Hedge-based demand pressure (Garleanu, Pedersen, Poteshman; RFS, 2009)
 - Empirical evidence: CDS prices exhibit sizeable liquidity premia (Tang and Yan, 2009; Bongaerts, de Jong, Driessen; JF, 2011) which vary over time and with the creditworthiness of the underlying
Motivation II

- We have indirect evidence that there are frictions, but we do not know

1. The specific friction type: Stoll (JF, 2000) classifies real (inventory risk and market power) and informational (asymmetric information) frictions

2. Their price impact:
 a) studies so far have used indirect proxies and could not distinguish between frictions
 b) studies that try to measure frictions directly find no price impact
 - Counterparty risk (Arora, Gandhi, Longstaff; JFE, 2012) – negligible impact on CDS premia
 - Informed trading (Acharya and Johnson; JFE, 2007) – no price impact despite evidence for informed trading

- We are the first to precisely measure the price impact of frictions
Our Main Hypothesis

- **Frictions** play a central role for CDS premia

Frictions

- **Informational:**
 - asymmetric Information

- **Real:**
 - inventory risk
 - market power
Data

- 99% of all trades with German entities as underlying between 2009-2012 provided by the Depository Trust and Clearing Corporation
 - 70 underlyings, 432,650 transactions (new trades, assignments, terminations)
 - Most frequently traded: Daimler, Deutsche Telekom, Volkswagen
 - Total transaction volume 2.8 trn EUR, 1 trn new trades
 - Average premium change b/w two new trades 7 bps, new trade size 7 mn EUR
 - 595 unique buyers and sellers, 22 dealers participate in 87% of all transactions

- Individual time series of order flow:
 - Per reference entity/ISIN/seniority/currency/maturity combination
 - We consider change of premium in excess of market average; de-mean and standardize order flow to facilitate comparison across counterparties, reference entities

Gündüz, Nasev, Trapp (2013)
March 25, 2013
Page 5
Asymmetric Information

- Price impact of a protection sale

CDS trader: \(PD_{subj} \)

- Quotes 110 bps 90 bps
- Quotes 120 bps 100 bps

Gündüz, Nasev, Trapp (2013)
March 25, 2013
Page 6
Asymmetric Information

- Price impact of a protection buy

Gündüz, Nasev, Trapp (2013)
March 25, 2013
Page 7
Asymmetric Information

- H1: If CDS traders sell/buy protection, they increase/decrease prices to incorporate the information content of the trade

\[\Delta prem_t = a + b \cdot \left(1_{\text{sale}} - 1_{\text{buy}} \right) \]

- We analyze
 - The premium change between two transactions (Δ)
 - The markup in excess of the average market premium (M)

- We employ fixed effects to adjust for fundamental differences (b/w underlyings, submitter, etc.)

- We take relative values \((\Delta^{\text{rel}} / M^{\text{rel}})\) / add the av. premium change as a rhs variable to capture variation in fundamental values \((\Delta^{+\text{av}} / M^{+\text{av}})\)
Asymmetric Information

\[\Delta \text{prem}_t = a + b \cdot (1_{\text{sale}} - 1_{\text{buy}}) \]

<table>
<thead>
<tr>
<th></th>
<th>(\Delta)</th>
<th>(\Delta^{+\text{av}})</th>
<th>(\Delta^{\text{rel}})</th>
<th>(M)</th>
<th>(M^{+\text{av}})</th>
<th>(M^{\text{rel}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(b)</td>
<td>1.1007</td>
<td>0.8280</td>
<td>0.3133</td>
<td>0.1147</td>
<td>0.1849</td>
<td>0.1504</td>
</tr>
<tr>
<td>t-stat.</td>
<td>(4.46)</td>
<td>(5.84)</td>
<td>(7.92)</td>
<td>(0.54)</td>
<td>(0.90)</td>
<td>(3.69)</td>
</tr>
<tr>
<td>FE</td>
<td>Underlying, Submitter, Currency, Maturity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adj. (R^2)</td>
<td>2.6998</td>
<td>68.5580</td>
<td>0.2459</td>
<td>28.4546</td>
<td>31.0054</td>
<td>62.7034</td>
</tr>
<tr>
<td># Obs.</td>
<td>53,000</td>
<td>52,423</td>
<td>52,423</td>
<td>53,000</td>
<td>52,423</td>
<td>53,503</td>
</tr>
</tbody>
</table>

- CDS traders adjust premia by 18% more to reflect the transaction direction.

Gündüz, Nasev, Trapp (2013)
March 25, 2013
Page 9
Inventory Risk

- H2: If a transaction results in higher inventory risk for CDS traders, they adjust premia more strongly.

- We measure inventory risk in two ways:
 - as the **average market premium change**, signed with the transaction direction
 - as the size of the order flow (this may be also measure the degree of asymmetric information)
Inventory Risk

- Example: protection sale, market premium increases

CDS trader: PD_{subj}, market av. 100 bps

Quotes

- 110 bps
- 90 bps

Identical signal

PD_{subj} ↑, market av. 105 bps (PD_{market} ↑)

Quotes

- $120 + 5 + 3 = 128$ bps
- $100 + 5 + 3 = 108$ bps
Inventory Risk

- Example: protection sale, market premium drops

CDS trader: PD_{subj}, market av. 100 bps

Quotes:

110 bps

90 bps

Reverse signal

PD_{subj} ↑, market av. 95 bps (PD_{market} ↓)

Quotes:

120 - 5 - 3 = 112 bps

100 - 5 - 3 = 92 bps
Inventory Risk

$$\Delta prem_t = a + b \cdot (1_{\text{sale}} - 1_{\text{buy}}) + c \cdot \Delta market_t + d \cdot \Delta market_t \cdot (1_{\text{sale}} - 1_{\text{buy}})$$

<table>
<thead>
<tr>
<th></th>
<th>Δ</th>
<th>$\Delta^{av}(=\Delta)$</th>
<th>Δ^{rel}</th>
<th>M</th>
<th>$M^{av}(=M)$</th>
<th>M^{rel}</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>0.6988</td>
<td>-</td>
<td>0.3102</td>
<td>0.2882</td>
<td>-</td>
<td>0.1751</td>
</tr>
<tr>
<td>t-stat.</td>
<td>(4.92)</td>
<td>-</td>
<td>(7.85)</td>
<td>(1.40)</td>
<td>-</td>
<td>(4.28)</td>
</tr>
<tr>
<td>d</td>
<td>0.0365</td>
<td>-</td>
<td>0.0055</td>
<td>0.0292</td>
<td>-</td>
<td>0.0018</td>
</tr>
<tr>
<td>t-stat.</td>
<td>(10.30)</td>
<td>-</td>
<td>(5.54)</td>
<td>(5.68)</td>
<td>-</td>
<td>(1.76)</td>
</tr>
</tbody>
</table>

FE

<table>
<thead>
<tr>
<th>Underlying, Submitter, Currency, Maturity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adj. R^2</td>
</tr>
<tr>
<td># Obs.</td>
</tr>
</tbody>
</table>

➢ CDS traders adjust premia by 34% more to reflect inventory risk (and a.i.)

Gündüz, Nasev, Trapp (2013)
March 25, 2013
Page 13
Market Power

- CDS market players: a few large dealers and many buy-side investors
- Market structure suggests that dealers may have market power (e.g., due to search costs)
- Variation in trader type in our sample allows assessment of market power

- H3: CDS dealers pay smaller / earn larger premium adjustments compared to CDS buy-side counterparties
 - due to asymmetric information
 - due to asymmetric information and inventory risk
Market Power

\[\Delta prem_t = a + b \cdot \left(1_{\text{sale}} - 1_{\text{buy}} \right) + c \cdot \left(1_{\text{sale}} - 1_{\text{buy}} \right) \cdot 1_{\text{dealer}} \]

<table>
<thead>
<tr>
<th></th>
<th>(\Delta)</th>
<th>(\Delta^{+\text{av}})</th>
<th>(\Delta^{\text{rel}})</th>
<th>(M)</th>
<th>(M^{+\text{av}})</th>
<th>(M^{\text{rel}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(b)</td>
<td>2.1108</td>
<td>2.4805</td>
<td>1.3468</td>
<td>2.2224</td>
<td>1.9203</td>
<td>1.5609</td>
</tr>
<tr>
<td>t-stat.</td>
<td>(2.85)</td>
<td>(5.83)</td>
<td>(11.35)</td>
<td>(3.47)</td>
<td>(3.12)</td>
<td>(12.75)</td>
</tr>
<tr>
<td>(c)</td>
<td>-1.1364</td>
<td>-1.8583</td>
<td>-1.1622</td>
<td>-2.3698</td>
<td>-1.9516</td>
<td>-1.5858</td>
</tr>
<tr>
<td>t-stat.</td>
<td>(-1.45)</td>
<td>(-4.12)</td>
<td>(-9.24)</td>
<td>(-3.49)</td>
<td>(-2.99)</td>
<td>(-12.22)</td>
</tr>
</tbody>
</table>

FE: Underlying, Submitter, Currency, Maturity

<table>
<thead>
<tr>
<th></th>
<th>(\text{Adj. R}^2)</th>
<th># Obs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{Adj. R}^2)</td>
<td>2.7036</td>
<td>53,000</td>
</tr>
<tr>
<td># Obs.</td>
<td>52,423</td>
<td>52,423</td>
</tr>
</tbody>
</table>

◆ Higher premium adjustment for buy-side investors
Market Power

\[
\Delta \text{prem}_t = a + b \cdot (1_{\text{sale}} - 1_{\text{buy}}) + c \cdot (1_{\text{sale}} - 1_{\text{buy}}) \cdot 1_{\text{dealer}} + d \cdot \Delta \text{market}_t + e \cdot \Delta \text{market}_t \cdot (1_{\text{sale}} - 1_{\text{buy}}) + f \Delta \text{market}_t \cdot (1_{\text{sale}} - 1_{\text{buy}}) \cdot 1_{\text{dealer}}
\]

<table>
<thead>
<tr>
<th></th>
<th>Δ</th>
<th>$\Delta^{+\text{av}(=\Delta)}$</th>
<th>Δ^{rel}</th>
<th>M</th>
<th>$M^{+\text{av}(=M)}$</th>
<th>M^{rel}</th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td>-1.9952</td>
<td>-</td>
<td>-1.1733</td>
<td>-1.8640</td>
<td>-</td>
<td>-1.5261</td>
</tr>
<tr>
<td>t-stat.</td>
<td>(-4.42)</td>
<td>-</td>
<td>(-9.36)</td>
<td>(-2.86)</td>
<td>-</td>
<td>(-11.76)</td>
</tr>
<tr>
<td>f</td>
<td>-0.0363</td>
<td>-</td>
<td>0.0016</td>
<td>-0.0232</td>
<td>-</td>
<td>-0.0056</td>
</tr>
<tr>
<td>t-stat.</td>
<td>(-9.65)</td>
<td>-</td>
<td>(0.5863)</td>
<td>(-4.26)</td>
<td>-</td>
<td>(-1.65)</td>
</tr>
</tbody>
</table>

FE
Underlying, Submitter, Currency, Maturity

<table>
<thead>
<tr>
<th></th>
<th>Adj. R^2</th>
<th># Obs.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>68.6719</td>
<td>52,423</td>
</tr>
</tbody>
</table>

- Significantly better trading conditions for dealers
Conclusion

- Our study is the first to document the price impact of frictions on CDS premia.
- We show that this impact is of considerable magnitude.
 - Asymmetric information increases changes by 18%.
 - Adding inventory risk increases the impact to 34%.
 - Buy-side investors pay significantly higher surcharges due to frictions, which is consistent with dealer market power.
- Our results have implications for market participants, supervisors, and academics concerned with credit risk management and derivatives' market microstructure.