Market Structure, Counterparty Risk, and Systemic Risk

Dale W.R. Rosenthal

UIC, Department of Finance

25 March 2013
6th Financial Risks International Forum: Liquidity Risk
Institut Louis Bachelier

\(^1\)daler@uic.edu; tigger.uic.edu/\sim daler
Counterparty Risk

- **Counterparty**: other side of ongoing financial agreement.
 - A bank enters into a swap with you on the S&P 500.

- **Counterparty Risk**
 - Risk resulting from default/bankruptcy of a counterparty.
 - Strictly: Risk to you from one of your counterparties.
 - Broadly: Includes effects on overall market (our concern).

- This broad definition we refere to as *systemic risk*.
Counterparty Risk to Systemic Risk

- Counterparty risk affects market when large failure looms:
 - Near-bankruptcy of Bear Stearns (May 2008)
 - Bankruptcy of Lehman Brothers (Sep 2008)
 - Bankruptcy of Refco Inc? (Oct 2005, owned #1 CME broker)

- Outstanding notional at CME before ceasing trading:
 - Bear
 - Lehman
 - Refco LLC
 - $761 BB
 - $1,150 BB
 - $130 BB

- N.B. No defaults or trade halts at CME for these events.

- Is counterparty risk an “accelerant” in financial crises?
Distress increases volatility sharply and significantly.
- Widens spreads: transactions costs \uparrow; market liquidity \downarrow.
- Volatility is pushed onto the survivors (externality).

Crisis bankruptcies have real costs:
- Virtuous, vicious circles of market and funding liquidity2.
- Reduced funding liquidity affects non-financial firms also.
- Less invested in risky assets; allocative inefficiency?
- Higher unemployment: harder job searches, lower tax revenue.
- Bernanke (1983): affects credit markets; possible depression.

Market structure affects contagion and exposure to defaults.

Specifically: complete networks magnify systemic risk.
 - Difference due to differing creation of complete networks.
 - Also: financial, banking networks differ (cf Acemoglu).

Market fragility estimable with a few metrics of market core.
Can price distress volatility of differing structures.
Model: Market Structures

- Investigate two extremes of n-counterparty networks.

![Network Diagram]

Star network
(Market with CCP3)

Complete network
(Bilateral “OTC” market)

- Each node is a counterparty (capital K, risk aversion λ).
- Each edge is a contract4 linking counterparties i and j.
- Contract exposure: $q_{ij} = -q_{ji}$; $q_{i<j} \overset{iid}{\sim} N(0, \eta^2)$
- Counterparty i’s net exposure: $Q_i = \sum_{j \neq i} q_{ij}$.
- Same net exposures (Q_i’s) in both networks.

3Central counterparty.
4A swap or forward on a risky asset.
Model: Event Timing

To study counterparty risk, events occur at discrete times.

\(t = 0 \): Bankruptcy of counterparty \(n \) occurs.
 - All contracts with counterparty \(n \) are invalidated.
 - Pushes unwanted exposure onto other \(n - 1 \) counterparties.

\(t = 1 \): Living counterparties trade in response to bankruptcy.

\(t = 2 \): Living counterparties close out bankruptcy-induced exposure.

Order of trading in a period is random, not strategic.
Model: Price Impact of Trading

- Each counterparty i trades x_i shares at time $t = 1$.
 - Impact has linear permanent component\(^5\).
 - Permanent component impacts prices for later traders.
- Trade ordering, price impact create low and high prices.
- Time periods are very short; two simplifying assumptions:
 1. Prices have no drift other than price impact due to trading.
 2. Price diffusion is Gaussian (not log-normal).
- Defer handling crisis-related adverse selection.

\(^5\)Price impact could arise from inventory risk cost, non-crisis adverse selection.
Suppose counterparty A is net long the market.
⇒ Other counterparties are net short the market.
These are their preferred equilibrium positions.
Thus when counterparty A defaults:
- Survivors must re-create exposure from counterparty A.
- Survivors become net sellers.

CCP market: only CCP trades; net sell.

OTC market: some counterparties will sell, some will buy.

However, counterparties trade in own interest.
- Do they rehedge immediately? Push market further?
Consider bankruptcy of a large financial firm.
Assume large market move \(r_0 \) at \(t = 0 \) induces bankruptcy.
Net exposure \(Q_n \) probably large; estimate via EVT\(^6\).

\[
\hat{Q}_n = \frac{-K}{r_0} + \frac{\eta \sqrt{n-1}}{c_n(1 - e^{-c_n \kappa_1 - d_n})} \sum_{k=1}^{\infty} \frac{(-1)^{k+1} e^{-k (c_n \kappa_1 + d_n)}}{k k!}
\]

where \(\kappa_1 = \frac{-K}{r_0 \eta \sqrt{n-1}} \) (minimum exposure causing death),
\(c_n = \frac{1}{\sqrt{2 \log(n)}} \), and \(d_n = \sqrt{2 \log(n)} - \frac{\log \log(n) + \log(16 \tan^{-1}(1))}{2 \sqrt{2 \log(n)}} \).

\(^6\)Equivalent: endow all counterparties with perfect information, examine most likely \(Q_n \mid r_0 \).
For large Q_n, trading at $t = 1, 2$ will move market a lot.

Move will be further in direction that caused bankruptcy.

This raises two distressing possibilities:
- Contagion: move may cause other counterparties to fail; or,
- Checkmate: hedging may bankrupt the hedger.

Counterparties anticipate these, respond selfishly.

For bilateral OTC market, all counterparties may trade.
- All hedge anticipated follow-on bankruptcy exposure \hat{Q}_f.
- Trouble: $\nu > 1$ (overtrading at $t = 1$) to be expected.
- Longs, shorts may largely self-segregate rehedge timing.

Thus network structure matters.
CCP anticipates follow-on bankruptcies; equilibrium yields

Follow-on bankruptcy exposure \hat{Q}_f (distress exposure):

$$\hat{Q}_f = (n - 1)^{3/2} \eta \frac{\phi(\kappa_2) - \phi(\kappa_1)}{\Phi(\kappa_1)}$$

where

$$\kappa_2 = \frac{-Kp_0 / [\eta \sqrt{n - 1}]}{p_0 r_0 - \pi (\hat{Q}_n + \hat{Q}_f)} = \text{min exposure for follow-on death.}$$

Follow-on bankruptcies \hat{b} (distress pervasiveness):

$$\hat{b} = (n - 1) \frac{\int_{\kappa_2}^{\kappa_1} \phi(z)dz}{\int_{-\infty}^{\kappa_1} \phi(z)dz} = (n - 1) \left(1 - \frac{\Phi(\kappa_2)}{\Phi(\kappa_1)}\right)$$
Large Bankruptcy: Equilibrium OTC Net Trade

- OTC traders anticipate one another, follow-on bankruptcies.
- However: those most at-risk rehedge quickly, others delay.
- Random trade sequence ⇒ uncertain low of rehedging S_{n-1}.
- Use these to solve for equilibrium OTC net trade.

\[\kappa_2 = \frac{-Kp_0}{\eta \sqrt{n-1}(p_0r_0 + \pi E(S_{n-1}|\nu))}, \]

\[\hat{Q}_f = (n-1)^{3/2} \eta \frac{\phi(\kappa_2) - \phi(\kappa_1)}{\Phi(\kappa_1)}. \]

- Important to note that $\nu \geq 1$ (in $E(S_{n-1})$).
- Finding ν is hard: n-player (random) game; usually $c1.75$.
Strategic Trading: All Together Now?

Proposition (Pooling)

In bilateral OTC markets, buyers and seller may split their trades between periods 1 and 2 according to cost minimization. This pooling of buying and selling is a Bayesian Nash equilibrium.

Proposition (Separating)

In bilateral OTC markets, buyers and sellers may separate with buyers in one period and sellers in the other period. This separating of trade timing is a Bayesian Nash equilibrium.

In progress: Proofs of pooling vs separating decision, effects.
Bad Behavior? Checkmate and Hunting

Proposition (Checkmate)

A large enough initial bankruptcy may yield a follow-on bankruptcy in expectation — despite any finite effort by the troubled counterparty.

Proposition (Hunting)

For a complete network of 3 or more counterparties and a large enough initial bankruptcy, two or more other counterparties may profit by driving a survivor into (follow-on) bankruptcy.
The Separating Equilibrium

- I mentioned an (extreme) possibility in bilateral OTC markets:
 - Buyers and sellers may separate when they trade.
 - Those who are same side as net rehedge rush to hedge first.
 - Those on other side wait to allow maximum distress.
 - If net rehedge makes sellers panic, net sale in period 1 is:

\[
- E(\sum_{i=1}^{n-1} [x_i] - |\sum_{i=1}^{n-1} x_i| = -\hat{Q}_n - \hat{Q}_f)
\approx -(n-1)^{3/2} \eta \phi(\mu^*) - (\hat{Q}_n + \hat{Q}_f)(1 - \Phi(\mu^*)) \tag{7}
\]

where \(\mu^* = \frac{\hat{Q}_n + \hat{Q}_f}{(n-1)^{3/2} \eta} \) (net rehedge in std devs/survivor) and \(\phi, \Phi \) are standard normal pdf, cdf.
Large Bankruptcies: Indicative Distress

- Consider large bankruptcy for \(n = 10 \) counterparties\(^7\).
- Std deviation of bilateral contract exposure \(\eta = 1,000,000 \).
- Distress exposure \(\hat{Q}_f \) and pervasiveness \(\hat{b} \) vs. \(\hat{Q}_n \).

Lines: (P)ooled OTC; (S)eparated OTC; (C)CP

\(P – S \): Envelopes of distress exposure, pervasiveness

\(^7\)Price impact parameters are as in Almgren and Chriss (2001).
Large Bankruptcies: Example of Market Impact

- Suppose $\hat{Q}_n = 10,000,000$; GARCH variance decay of 0.9.
- For CCP market:
 - Expected market impact: -30.
 - Effective annual volatility goes from 30% to 38%.
- If pooled OTC buyers, sellers overtrade $1.75 \times$ at $t = 1$.
 - Annual volatility \uparrow to 328% (instant.), 146% (effective).
- If OTC buyers and sellers separate, at $t = 1$:
 - Expected market impact: -41.
 - Annual volatility \uparrow to 596% (instant.), 268% (effective).
Large Bankruptcies: Example of Real Effects

- Suppose $\hat{Q}_n = 10$ MM, market size of 40 MM\(^8\).
- If 8% equity premium and mean risk aversion of $\hat{\lambda} = 3$:
 - Equilibrium allocation to risky asset: 29% (71% cash).
 - Post-crisis: 19% (CCP), 1.2% (OTC pool), 0.4% (OTC sep).
- Cost of distress externality:
 - 3.2 MM (CCP), 123 MM (OTC pool), 425 MM (OTC sep).
 - Cost of OTC market distress is 3–11× market size.
- Given 2–3 bankruptcies; mean employees, compensation:
 - 260,000–400,000 unemployed; $33–$49 billion pay loss.
 - At 40% total taxes: revenue loss of $13–$20 billion.
- Also affects credit markets, overall macroeconomy.

\(^8\)Approximately $2(\hat{Q}_n + \hat{Q}_f)$.
Complete networks admit two destabilizing events:
- Checkmate: weak counterparty may have no beneficial trade.
- Hunting: counterparties force others into bankruptcy.

Worse, hunting is a full equilibrium behavior.
- Market may be pushed far beyond one follow-on bankruptcy.

Are counterparties selfishly amoral/evil? Maybe not.
- Trade amount may pre-hedge expected follow-on bankruptcies.
- This reduces surprise need for trading in period 2.

CCP markets have fewer such destabilizing events.
- Suggests central clearing reduces OTC market volatility.
Difference from Allen and Gale (2000)

- Allen and Gale (2000): complete networks are more robust.
- I disagree: complete networks are more fragile.
- Allen and Gale approach: top-down.
 - Net exposure: $Q_i \sim N(0, (n-1)\eta^2)$
 - Contract exposure: $q_{ij} = Q_i/(n-1)$. (all same sign)
- My approach: bottom-up.
 - Contract exposure: $q_{i<j} \sim N(0, \eta^2); q_{ij} = -q_{ji}$
 - Net exposure: $Q_i = \sum_{j\neq i} q_{ij}; Q_i \sim N(0, (n-1)\eta^2)$.
- Same net exposures Q_i’s, different contract exposures q_{ij}’s.
- Strategic separation of buyers, sellers unlikely in A&G.
Conclusion

- Even small bankruptcies temporarily increase volatility.
- For a large bankruptcy in a bilateral OTC market:
 - Counterparties may be unable to save themselves (checkmate).
 - Counterparties may hunt their weakest peers for profit.
 - Volatility externality (and thus cost) higher than CCP market.
- Self-segregating buyers, sellers in OTC markets can be nasty:
 - Externality distress cost \gg market size. (market failure?)
- Suggests benefits to centralized clearing in OTC markets\(^9\).
- Volatility externality cost \Rightarrow when to move markets to CCP.
- May be able to measure when markets are more/less brittle.
 - n, η, \bar{K} for part of market like complete network.

\(^9\)Biais, Heider, Hoerova (2011) suggests CCP is capital efficient.