Optimal liquidation of an illiquid asset under stochastic liquidity and regime shifting

Etienne Chevalier∗ † Vathana Ly Vath ‡ † Alexandre Roch § Simone Scotti¶

March 14, 2013

Abstract

We study the problem of selling an illiquid asset in a market in which unfavorable bid prices are readily available and favorable offers enter the market less frequently. We setup a liquidity model in which the liquidity premium implicit in the bid prices evolves stochastically and the rate of arrival of favorable offers is governed by a regime-shifting Markov process. The objective is to maximize the expected utility of the proceeds received from the sale of the illiquid asset. We formulate this problem as a multidimensional optimal stopping time problem with random maturity. We characterize the objective function as the unique viscosity solution of the associated system of variational Hamilton–Jacobi–Bellman inequalities. We derive explicit solutions in the case of power and logarithmic utility functions when the liquidity premium factor follows a mean-reverting CIR process.

Keywords: stochastic control, liquidity risk, limit and market orders, viscosity solutions, system of variational inequalities.

1 Introduction

Many classical models in mathematical finance assume infinite liquidity or perfect elasticity of traded assets. In particular, it is often assumed that there is a unique market price for a given asset at which traders may buy or sell any quantity instantaneously. Relaxing this assumption is crucial in the study of many financial problems, including optimal allocation and liquidation problems for large portfolios. The market liquidity crisis of 2007-2008 and the contagion effect that triggered a complete meltdown of many financial markets around the world has highlighted the pressing need for better liquidity management. Since then, there has been an increasing number of studies on liquidity risk and its management in the mathematical finance literature.

In this paper, we consider the problem of filling a sale order of an illiquid asset traded in a market in which unfavorable bid prices are readily available and favorable offers enter the market less frequently. On one hand, the investor may choose to accept the current highest bid price, which is offered however at a (liquidity) discount with respect to a fair price. On the other hand, the investor may also choose to wait until an investor agrees to buy the asset at the fair price. Our analysis applies particularly well to over-the-counter markets, block trades markets, private equity and real estate markets in which liquidity risk is an important factor.

The main goal in the study of liquidity risk is to find the best way to quantify the costs incurred by investors trading in markets in which supply is finite, trade counterparts are not always available, or trading causes price impacts. Furthermore the extent to which these above properties are present varies randomly through time. Liquidity models vary considerably among academic studies, and each model is adapted to the problem at hand. We may, for instance, point out the literature on informed trading ([3], [13]) and bid-ask spreads ([9], [12], [20]). More recently studies on large trader models ([4], [14], [19]), and dynamic supply curves ([6]), with an emphasis on liquidation problems ([1], [16]), have been given a considerable amount of attention.

In most studies mentioned so far, with the exception of the insider trading models of Back [3] and Kyle [13], it is always assumed that investors are price-takers, i.e. liquidity takers, in the sense that they trade at the available prices with a liquidity premium that must be paid for immediacy. It is clear from the structure of financial markets that in addition to the presence of price-takers there must necessarily exist market participants who are price-setters or liquidity providers. For instance, in dealers markets, a market-maker (or specialist) quotes bids and offers and serves as the intermediary between public traders. In limit order book markets, traders can post prices and quantities at which they are willing to buy or sell while waiting for a counterparty to engage in that trade. In less liquid markets such as real estate markets and many other over-the-counter markets, individual traders must meet and negotiate for a transaction to occur, so that the risk that a counterparty does not arrive in the short term is a non-negligible factor. It is important to highlight that in many markets, participants may be simultaneously price-takers, by trading with readily available counterparties, and price-setters, by submitting their own bids and offers. It is therefore desirable to consider an enlarged set of admissible trading
strategies by including the possibility of trading at the current best bid (market price) or submitting a more favorable ask price (limit price). Several research papers investigate liquidation problems with limit orders, see for instance [2], [5], and [10]. In [11], the authors study the problem of a market maker whose objective is to maximize her expected utility from revenue over a short term horizon by submitting both limit and market orders.

Our liquidity model most resembles the market-making model of Guilbaud and Pham [11]. However, we model both the liquidity discount and the limit price as diffusion processes. In [11], the arrival intensity is deterministic and the bid-ask spread is modeled by a time-changed Markov chain. In the following, we assume that the market order arrival time, i.e. the time at which the limit price is matched, by means of an intensity function depending on the current state of a Markov chain. This intensity process can be thought as a measure of liquidity given current market conditions. The objective is to maximize the expected utility of the wealth received from the sale of the asset. We formulate this two-dimensional stochastic control problem as an optimal stopping time problem with random maturity and regime shifting.

The rest of the paper is organized as follows. We define the model and formulate our optimal stopping problem in the following section. In Section 3, we characterize the solution of the problem in terms of the unique viscosity solution to the associated HJB system and obtain some qualitative description of these functions. In Sections 4 and 5, we derive explicit solutions in the case of power and logarithmic utility functions when the liquidity discount factor follows a mean-reverting CIR process.

2 The Illiquid Market Model

Let (Ω, ℱ, ℙ) be a probability space equipped with a filtration ℱ = (ℱₜ)ᵗ≥₀, satisfying the usual conditions. It is assumed that all random variables and stochastic processes are defined on the stochastic basis (Ω, ℱ, ℙ). We denote by T the collection of all ℱ-stopping times. Let W and B be two correlated ℱ-Brownian motions, with correlation ρ, i.e. d[W, B]ₜ = ρdt for all t. We consider a financial market, in which there is an illiquid asset with a theoretical or fair value evolving according to a positive process S, which may be written as Sₜ := exp(Xₜ). The process X is assumed to follow the following SDE

\[dXₜ = \mu(Xₜ)dt + \sigma(Xₜ)dBₜ \]
\[X₀ = x, \]

with \(\mu \) and \(\sigma \) two Lipschitz functions on \(\mathbb{R} \) and satisfying the following growth condition

\[\lim_{|x| \to \infty} \frac{\mu(x) + |\sigma(x)|}{|x|} = 0. \]

The investor holding the asset may not currently be able to sell it at its fair price as this asset is illiquid. To be more specific, the investor has two ways of disposing of this asset, he can either wait until an “impatient” investor decides to buy it at the fair price or sell it at any desired time with a liquidity premium for immediacy. In general, our model applies to
any illiquid market structure. Examples of such assets include real estate, private equity, credit and exotic options and other over-the-counter markets for other illiquid products.

Liquidity discount factor. We model the liquidity discount factor as a given process \((f(Y_t))_{t \geq 0}\), where \(f\) is strictly decreasing \(C^2\) function defined on \(\mathbb{R}^+ \to [0, 1]\), and satisfies the following conditions:

\[
\begin{align*}
 f(0) &= 1 \quad \text{and} \quad \lim_{y \to \infty} f(y) = 0 \\
 \exists \ c_0 > 0, \text{ such that } \lim_{y \to \infty} f(y) \exp(y^{c_0}) &= 0.
\end{align*}
\] (2.3)

The liquidity discount factor, given by \(f(Y_t)\) at time \(t\), is defined in terms of the mean-reverting non-negative process \(Y\) which is governed by the following SDE:

\[
\begin{align*}
 dY_t &= \alpha(Y_t)dt + \gamma(Y_t)dW_t, \quad (2.4) \\
 Y_0 &= y,
\end{align*}
\]

where \(\alpha\) is a Lipschitz function on \(\mathbb{R}^+\) and, for any \(\varepsilon > 0\), \(\gamma\) is a Lipschitz function on \([\varepsilon, \infty)\). We assume that \(\alpha\) and \(\gamma\) satisfy the following growth condition

\[
\limsup_{|y| \to \infty} \frac{|\alpha(y)| + |\gamma(y)|}{|y|} < +\infty. \quad (2.5)
\]

Furthermore, to insure the mean-reverting property, we assume that there exists \(\beta > 0\) such that \((\beta - y)\alpha(y)\) is positive for all \(y \geq 0\).

Should the investor decide to sell the asset at the highest available bid price, i.e. with a liquidity discount, he would obtain a cash flow of \(S_t f(Y_t)\).

Remark 2.1 The process \(Y\) is a measure of illiquidity. Indeed, when \(Y\) goes to infinity, the discount factor \(f(Y)\) goes to zero, whereas the liquidation cost vanishes when \(Y \to 0\), i.e. the highest bid price converges to the fair price of the asset.

Remark 2.2 The main example is \(f(y) = \exp(-y)\) with the process \(Y\) given as a CIR process:

\[
\begin{align*}
 dY_t &= \kappa (\beta - Y_t) dt + \gamma \sqrt{Y_t} dW_t, \quad (2.6) \\
 Y_0 &= y,
\end{align*}
\]

with \(\kappa, \beta\) and \(\gamma\) positive constants.

Market order arrival. We define the market order arrival time as the moment when a trader is willing to buy the asset at its fair price \(S_t\) from the investor. We model the market order arrival time, denoted by \(\tau\), by means of an intensity function \(\lambda_i\) depending on the current state \(i\) of a continuous-time, time-homogenous, irreducible Markov chain \(L\), independent of \(W\) and \(B\), with \(m + 1\) states. The states of the chain represent liquidity states of the financial market. The generator of the chain \(L\) under \(\mathbb{P}\) is denoted by \(A = \ldots\)
Here $\vartheta_{i,j}$ is the constant intensity of transition of the chain L from state i to state j ($0 \leq i, j \leq m$). Without loss of generality we assume

$$\lambda_0 > \lambda_1 > \ldots > \lambda_m > 0.$$ \hfill (2.7)

Utility function. We let U denote the utility function of the investor. We assume that U satisfies the following assumptions.

Assumption 2.1 $U : \mathbb{R}^+ \rightarrow \mathbb{R}$ is non-decreasing, concave and two times continuously differentiable, and satisfies

$$\lim_{x \to 0} x U'(x) < +\infty.$$ \hfill (2.8)

Assumption 2.2 U is supermeanvalued w.r.t. S, i.e.

$$U(S_t) \geq \mathbb{E}[U(S_\theta)|\mathcal{F}_t]$$ \hfill (2.9)

for any stopping time $\theta \in \mathcal{T}$.

Remark 2.3 The financial interpretation of the supermeanvalued property of U w.r.t. S is as follows: it is always better to accept an incoming market order then to wait for a later one. Indeed, if a buy order for the fair value S_t arrives at time t, then the utility of the obtained price S_t, is greater that the expected utility obtained at any fair price in the future.

For more details on the “supermeanvalued” property, which is closely related to the concept of “superharmonicity”, we may refer to Dynkin [8] and Okendal [17].

Objective function. The objective of the investor is to maximize the expected utility of the wealth obtained from the sales of the illiquid asset. As such, we consider the following value function:

$$v(i, x, y) := \sup_{\theta \in \mathcal{T}} \mathbb{E}^{i,x,y}[h(X_\theta, Y_\theta) \mathbb{1}_{\theta \leq \tau} + U(e^{X_\tau}) \mathbb{1}_{\theta > \tau}], \quad x \in \mathbb{R}, y \in \mathbb{R}^+, i \in \{0, \ldots, m\}$$ \hfill (2.10)

where $\mathbb{E}^{i,x,y}$ stands for the expectation with initial conditions $X_0 = x$, $Y_0 = y$ and $L_0 = i$, and $h(x, y) = U(e^{x f(y)})$. Recall that τ, the market order arrival time, is defined through the Markov chain L.

For the rest of the paper, we sometimes write $v_i(x, y)$ instead of $v(i, x, y)$ depending on the context.

3 Characterization of the value function

3.1 First analytical properties of the value function

We denote by \mathcal{L} the second order differential operator associated to the state processes (X, Y):

$$\mathcal{L}\phi(x, y) = \mu(x) \frac{\partial \phi}{\partial x} + \alpha(y) \frac{\partial \phi}{\partial y} + \frac{1}{2} \sigma^2(x) \frac{\partial^2 \phi}{\partial x^2} + \gamma(y) \sigma(x) \frac{\partial^2 \phi}{\partial x \partial y} + \frac{1}{2} \gamma^2(y) \frac{\partial^2 \phi}{\partial y^2}. \hfill (3.11)$$
The main result of this section is that the value functions v_i are the unique viscosity solution of the following variational inequality:

$$\min \left[-L v(i, x, y) - G_i v(., x, y) - J_i v(i, x, y) , v(i, x, y) - h(x, y) \right] = 0, \quad (3.12)$$

in which the operators G_i and J_i are defined as

$$G_i \varphi(., x, y) = \sum_{j \neq i} \vartheta_{i,j} (\varphi(j, x, y) - \varphi(i, x, y))$$

$$J_i \varphi(i, x, y) = \lambda_i (U(e^x) - \varphi(i, x, y)).$$

We can also say that the family of value functions $v_i(i = 0, \ldots, m)$ is the unique solution of the above system of variational inequalities, meaning that each v_i satisfies the variational inequality (3.12) for $i = 0, \ldots, m$. In the same reasoning, we sometimes write $G_i v(., x, y)$ instead of $G_i v(i, x, y)$ when refering to the v_i’s as a family of functions.

Before stating the main result, we derive a number of analytical properties of the value functions.

Proposition 3.1 The value functions v_i are non-decreasing in x and non-increasing in y and verify the following inequalities

$$\max \left(h(x, y), \mathbb{E}^x[U(e^{X_\tau})] \right) \leq v_i(x, y) \leq U(e^x) \text{ on } [x] \times [y]$$

Proof. From the definition of the value function, by considering $\theta = 0$, it is obvious that $v_i(x, y) \geq h(x, y)$.

For any $t > 0$, we also have

$$v_i(x, y) \geq \mathbb{E}^{x,y} \left[h(X_t, Y_t) \mathbb{1}_{Y_t \leq \tau} \mathbb{1}_{Y_t > 0} + U(e^{X_\tau}) \mathbb{1}_{\tau > 0} \right].$$

As τ is almost surely finite, letting t going to $+\infty$, we find that $v_i(x, y) \geq \mathbb{E}^x[U(e^{X_\tau})]$.

Since U is non-decreasing and $0 \leq f(Y) \leq 1$, we also have the following inequalities:

$$v_i(x, y) \leq \sup_{\theta \in T} \mathbb{E} \left[U(e^{X_{\theta \leq \tau}}) \mathbb{1}_{\theta \leq \tau} + U(e^{X_{\theta > \tau}}) \mathbb{1}_{\theta > \tau} \right]$$

$$\leq \sup_{\theta \in T} \mathbb{E} \left[U(e^{X_{\theta \leq \tau}}) \right]$$

$$\leq \sup_{\theta \in T} \mathbb{E} \left[U(e^{X_{\theta}}) \right].$$

Using the supermeanvalued property of U w.r.t S, we obtain $v_i(x, y) \leq U(e^x)$.

From the uniqueness of the solution of the stochastic differential equation (2.1) combined with the non-decreasing property of U, we obtain that v_i is non-decreasing in x. We may apply the same argument to obtain that v_i is non-increasing in y, but one should be careful when using the uniqueness of the trajectory of Y which only holds up to $\xi_y \coloneqq \inf\{ t > 0, Y_t^y = 0 \}$. See Remark 3.5 below in this regard. Since $f(0) = \sup_{y \in \mathbb{R}^+} f(y) = 1$, the non-increasing property of v_i in y is verified. \qed
Remark 3.4 From Proposition 3.1, we obviously obtain that \(v_i(x,0) = U(e^x) \), which states that when the liquidity is infinite (i.e., \(y = 0 \)) or when the best bid price matches the “fair price” of the asset, it is optimal to immediately sell the asset. Furthermore, if \(\mathbb{E}^x[U(e^{X_T})] = U(e^x) \), we find that \(v_i(x,y) = U(e^x) \) so that the optimal policy is to wait until \(\tau \), i.e. the arrival of a market buy order.

In the following remark, we recall some properties on the continuity of the stochastic flow of processes \(X \) and \(Y \).

Remark 3.5 Noticing that the coefficients of the SDE governing \(X \) are Lipschitz continuous, we have the continuity of \(X(t,x) := X_t^x \) in variables \((t,x) \), for almost all \(\omega \). In particular, for any given \(t > 0 \), the mapping which associates \(x \) to the trajectory of \(X \):

\[
\mathbb{R} \to C([0,t],\mathbb{R})
\]

\[
x \mapsto X(.,\omega,x)
\]

is continuous. In here, \(C([0,t],\mathbb{R}) \) denotes the space of continuous real functions defined on \([0,t]\). On the other hand, since the coefficients of the SDE of \(Y \) are only locally Lipschitz, the mapping which associates \(y \) to the trajectory of \(Y \):

\[
\mathbb{R} \to C([0,t],\mathbb{R})
\]

\[
y \mapsto Y(.,\omega,y)
\]

is continuous only on the open set \(A_y := \{ y : \xi_y > t \} \), where as above \(\xi_y = \inf\{ t > 0 ; Y^y_t = 0 \} \).

Before turning to the continuity of the value functions, we show the following

Lemma 3.1 There exists a stopping time \(\theta^*_{i,x,y} \) such that

\[
v(i,x,y) = \mathbb{E}^{i,x,y} \left[h(X_{\theta^*_{i,x,y}}, Y_{\theta^*_{i,x,y}}) \mathbb{1}_{\theta^*_{i,x,y} \leq \tau \land \xi_y} + U(e^{X_T}) \mathbb{1}_{\theta^*_{i,x,y} > \tau \land \xi_y} \right]. \tag{3.14}
\]

Moreover, on \(\{ \xi_y \leq \tau \} \), we have \(\theta^*_{i,x,y} \leq \xi_y \).

Proof. We have

\[
v(i,x,y) = \sup_{\theta \in T} \mathbb{E}^{i,x,y} \left[h(X_{\theta}, Y_{\theta}) \mathbb{1}_{\theta \leq \tau} + U(e^{X_T}) \mathbb{1}_{\theta > \tau} \right].
\]

We consider the process \(Z \) defined as

\[
Z_t = h(X_t,Y_t) \mathbb{1}_{t \leq \tau} + U(e^{X_T}) \mathbb{1}_{t > \tau}.
\]

The process \((v(L_t, X_t, S_t))_{t \geq 0} \) is the Snell envelop of \(Z \). As such,

\[
v(i,x,y) = \mathbb{E}^{i,x,y} \left[Z_{\theta^*_{i,x,y}} \right]
\]

where

\[
\theta^*_{i,x,y} = \inf\{ t \geq 0 ; v(L^i_t, X^x_t, Y^y_t) \leq Z_t \}.
\]
From the definition of the stopping time ξ_y and since $v(i, x, 0) = U(e^x)$, we have

$$v(L^i_{\xi_y}, X^x_{\xi_y}, Y^y_{\xi_y}) = v(L^i_{\xi_y}, X^x_{\xi_y}, 0)$$

$$= U(e^{X^x_{\xi_y}})1_{\xi_y \leq \tau} + U(e^{X^x_{\xi_y}})1_{\tau < \xi_y}$$

$$= Z_{\xi_y} + \left(U(e^{X^x_{\xi_y}}) - U(e^{X^x_{\xi_y}}) \right)1_{\tau < \xi_y}.$$

Therefore, on the set $\{\xi_y \leq \tau\}$, we have $v(L^i_{\xi_y}, X^x_{\xi_y}, Y^y_{\xi_y}) = Z_{\xi_y}$ so that $\theta^*_i, x, y \leq \xi_y$.

Moreover, we find

$$\{\theta^*_i, x, y \leq \tau\} = \{\theta^*_i, x, y \leq \tau \land \xi_y\} \quad \text{and} \quad \{\theta^*_i, x, y > \tau\} = \{\theta^*_i, x, y > \tau \land \xi_y\}.$$

It allows us to conclude the proof, by observing that

$$v(i, x, y) = \mathbb{E}^{i, x, y} \left[Z_{\theta^*_i, x, y} \right]$$

$$= \mathbb{E}^{i, x, y} \left[h(X_{\theta^*_i, x, y}, Y_{\theta^*_i, x, y}) 1_{\theta^*_i, x, y \leq \tau \land \xi_y} + U(e^{X_{\theta^*_i, x, y}}) 1_{\theta^*_i, x, y > \tau \land \xi_y} \right].$$

We now prove the continuity of the value functions.

Proposition 3.2 The value functions v_i are continuous on $\mathbb{R} \times \mathbb{R}^+$ and satisfy:

$$\lim_{(u, y) \to (x, 0^+)} v_i(u, y) = v_i(x, 0) = U(e^x).$$

Proof. Since both $h(x, y)$ and $U(e^x)$ are continuous, using relation (3.13), we obtain

$$\lim_{(u, y) \to (x, 0^+)} v_i(u, y) = v_i(x, 0) = U(e^x),$$

leading to the continuity of v_i on $\mathbb{R} \times \{0\}$.

We now examine the continuity of v_i at a given $(x, y) \in \mathbb{R} \times (0, \infty)$ and $i \in \{0, ..., m\}$. We consider a sequence $(x_n, y_n)_{n \geq 0}$ which converges to (x, y). Without loss of generality, we may consider $(x_n, y_n) \in (x - 1, x + 1) \times ((y - 1)_, y + 1)$. We need to show that $\lim_{n \to \infty} v_i(x_n, y_n) = v_i(x, y)$, which we will show in two steps.

Step 1. We first show that for a given $\varepsilon > 0$, there exists an $N > 0$, such that $\forall n \geq N$, we have

$$v_i(x_n, y_n) - v_i(x, y) \leq \varepsilon.$$

We separate the sequence (x_n, y_n) into two subsequences,

- $(\tilde{x}_n, \tilde{y}_n)$, the subsequence containing only $y_n \geq y$
- (\bar{x}_n, \bar{y}_n) the subsequence containing only $y_n < y$.

8
(a) Sequence \((\tilde{x}_n, \tilde{y}_n)\). Since \(v_i\) is non-increasing in \(y\), we have
\[
v_i(\tilde{x}_n, \tilde{y}_n) - v_i(x, y) \leq v_i(\tilde{x}_n, y) - v_i(x, y).
\]
For \(n\), such that \(\tilde{x}_n \leq x\), we have
\[
v_i(\tilde{x}_n, y) - v_i(x, y) \leq 0.
\]
(3.15)

For all \(n\) such that \(\tilde{x}_n > x\), from Lemma 3.1, there exists \(\theta_n\), such that
\[
v_i(\tilde{x}_n, y) = \mathbb{E}^{\tilde{x}_n, y} \left[h(X_{\theta_n}, Y_{\theta_n}) \mathbb{I}_{\theta_n \leq \xi_y \wedge \tau} + U(e^{X_{\theta_n}}) \mathbb{I}_{\tau \wedge \xi_y < \theta_n} \right].
\]

As such, we have
\[
0 \leq v_i(\tilde{x}_n, y) - v_i(x, y) \leq \mathbb{E}^{\tilde{x}_n, y} \left[h(X_{\theta_n}^\dagger, Y_{\theta_n}^\dagger) - h(X_{\theta_n}^\ddagger, Y_{\theta_n}^\ddagger) \right] \mathbb{I}_{\theta_n \leq \tau \wedge \xi_y} + \left(U(e^{X_{\theta_n}^\dagger}) - U(e^{X_{\theta_n}^\ddagger}) \right) \mathbb{I}_{\tau \wedge \xi_y < \theta_n}.
\]

We let
\[
A_n := h(X_{\theta_n}^\dagger, Y_{\theta_n}^\dagger) - h(X_{\theta_n}^\ddagger, Y_{\theta_n}^\ddagger) \geq 0,
\]
\[
B_n := (U(e^{X_{\theta_n}^\dagger}) - U(e^{X_{\theta_n}^\ddagger})) \geq 0.
\]

We first notice \(h\) is continuous in both variables and, in particular, continuous in the first variable, uniformly on any compact set of the second variable. Using Remark 3.5 and noticing that the function \(f\) is valued in the compact \([0, 1]\), we obtain
\[
\lim_{n \to \infty} A_n = 0, \quad \text{a.s.}
\]

Furthermore, by well-known comparison theorems for SDEs, for \(n\) big enough, we have
\[
|A_n| = h(X_{\theta_n}^\dagger, Y_{\theta_n}^\dagger) - h(X_{\theta_n}^\ddagger, Y_{\theta_n}^\ddagger)
\leq h(X_{\theta_n}^{x+1}, Y_{\theta_n}^y) - h(X_{\theta_n}^x, Y_{\theta_n}^y)
\leq \sup_{\tau \leq \tau} \left[h(X_{\theta_n}^{x+1}, Y_t^y) - h(X_t^x, Y_t^y) \right].
\]

Using the properties of the utility function \(U\), which is non-decreasing and concave, there exists \(s_0 > 0\) and \(M > 0\) such that \(\forall \ 0 < s < s_0\), we have \(sU'(s) < M\). As such, we have
\[
h(X_{\tau}^{x+1}, Y_t^y) - h(X_{\tau}^x, Y_t^y) < f(Y_t^y) \left(e^{X_{\tau}^{x+1}} - e^{X_{\tau}^x} \right) U'(f(Y_t^y)e^{X_{\tau}^x}) \mathbb{I}_{f(Y_t^y)e^{X_{\tau}^x} < s_0}
\]
\[
+ f(Y_t^y) \left(e^{X_{\tau}^{x+1}} - e^{X_{\tau}^x} \right) U'(s_0) \mathbb{I}_{f(Y_t^y)e^{X_{\tau}^x} \geq s_0}
\]
\[
\leq M \left(e^{X_{\tau}^{x+1} - X_{\tau}^x - 1} + e^{X_{\tau}^{x+1} - X_{\tau}^x} \right) U'(s_0).
\]

Then, we obtain
\[
|A_n| \leq \sup_{\tau \leq \tau} \left[M \left(e^{X_{\tau}^{x+1} - X_{\tau}^x - 1} + e^{X_{\tau}^{x+1} - X_{\tau}^x} \right) U'(s_0) \right],
\]

which is integrable.
It is equally clear that \(\lim_{n \to \infty} B_n = 0 \), a.s. and \(|B_n| \leq \left| U(e^{X^z_n + 1}) - U(e^{X^z_n}) \right| \), which is integrable.

Applying the dominated convergence theorem, we obtain that for all \(\varepsilon > 0 \), there exists \(N > 0 \), such that \(\forall n \geq N \),

\[
v_i(\bar{x}_n, \bar{y}_n) - v_i(x, y) \leq \varepsilon. \tag{3.16}
\]

For all \(n \) such that \(\bar{x}_n > x \), from Lemma 3.1, there exists \(\theta_n \) such that

\[
v_i(\bar{x}_n, \bar{y}_n) - v_i(x, \bar{y}_n) \leq E\left[\left(h(X_{\theta_n}^x, Y_{\theta_n}^{\bar{y}_n}) - h(X_{\theta_n}^x, Y_{\theta_n}^{y_n}) \right) \mathbb{1}_{\theta_n \leq \tau \wedge \xi_n} \right] + \left(U(e^{X_{\tau}^z}) - U(e^{X_{\tau}^z}) \right) \mathbb{1}_{\tau < \theta_n \wedge \xi_n}.
\]

We let

\[
C_n := h(X_{\theta_n}^x, Y_{\theta_n}^{\bar{y}_n}) - h(X_{\theta_n}^x, Y_{\theta_n}^{y_n}) > 0,
\]

\[
D_n := U(e^{X_{\tau}^z}) - U(e^{X_{\tau}^z}) > 0.
\]

Using the same argument as in (a), we have \(\lim_{n \to \infty} C_n(\omega) = 0 \), \(\lim_{n \to \infty} D_n(\omega) = 0 \), and \(C_n \) and \(D_n \) are dominated by integrable random variables. Applying the dominated convergence theorem, we obtain for a given \(\varepsilon \), there exists an \(N > 0 \), such that \(\forall n \geq N \), we have

\[
v_i(\bar{x}_n, \bar{y}_n) - v_i(x, \bar{y}_n) \leq \frac{\varepsilon}{2}. \tag{3.17}
\]

We now consider the term \(v_i(x, \bar{y}_n) - v_i(x, y) \). From Lemma 3.1, for all \(n \geq 1 \) there exists \(\theta_n \) such that

\[
v_i(x, \bar{y}_n) - v_i(x, y) \leq E\left[\left(h(X_{\theta_n}^x, Y_{\theta_n}^{\bar{y}_n}) - h(X_{\theta_n}^x, Y_{\theta_n}^{y_n}) \right) \mathbb{1}_{\theta_n \leq \tau \wedge \xi_n} \right].
\]

Since \(\bar{y}_n < y \), we have \(\xi_n \leq \xi_y \), and thanks to the monotonicity of \(h \), we may write

\[
E_n := \left(h(X_{\theta_n}^x, Y_{\theta_n}^{\bar{y}_n}) - h(X_{\theta_n}^x, Y_{\theta_n}^{y_n}) \right) \mathbb{1}_{\theta_n \leq \tau \wedge \xi_n} \leq \left(h(X_{\theta_n}^x, Y_{\theta_n}^{\bar{y}_n}) - h(X_{\theta_n}^x, Y_{\theta_n}^{y_n}) \right) \mathbb{1}_{\tau \leq \xi_n}.
\]

Moreover, it follows from Lemma 3.1 that \(\{\theta_n = \xi_y \leq \tau\} = \{\xi_n = \theta_n = \xi_y \leq \tau\} \). Therefore, we find

\[
E_n \leq \left[h(X_{\theta_n}^x, Y_{\theta_n}^{\bar{y}_n}) - h(X_{\theta_n}^x, Y_{\theta_n}^{y_n}) \right] \mathbb{1}_{\theta_n \leq \tau \wedge \xi_y} + \left[h(X_{\theta_n}^x, 0) - h(X_{\theta_n}^x, 0) \right] + \left[h(X_{\theta_n}^x, Y_{\theta_n}^{\bar{y}_n}) - h(X_{\theta_n}^x, Y_{\theta_n}^{y_n}) \right] \mathbb{1}_{\tau \leq \xi_y} \leq \left[h(X_{\theta_n}^x, Y_{\theta_n}^{\bar{y}_n}) - h(X_{\theta_n}^x, Y_{\theta_n}^{y_n}) \right] \mathbb{1}_{\theta_n \leq \tau \wedge \xi_y} + \left[h(X_{\theta_n}^x, Y_{\theta_n}^{\bar{y}_n}) - h(X_{\theta_n}^x, Y_{\theta_n}^{y_n}) \right] \mathbb{1}_{\tau \leq \xi_y}.
\]
Using Remark 3.5 and the same convergence argument as above, we obtain the pointwise convergence of E_n. Noticing that, for n big enough,

$$
[h(X_{\theta_n}^x, Y_{\theta_n}^y) - h(X_{\theta_n}^x, Y_{\theta_n}^y)] \mathbb{1}_{\theta_n < \tau \wedge \xi_y} \leq \sup_{t < \tau \wedge \xi_y} [h(X_t^x, Y_t^y) - h(X_t^x, Y_t^y)] \mathbb{1}_{t < \tau \wedge \xi_y},
$$

and

$$
[h(X_{\tau}^x, Y_{\tau}^y) - h(X_{\tau}^x, Y_{\tau}^y)] \mathbb{1}_{\tau \leq \xi_y} \leq [h(X_{\tau}^x, Y_{\tau}^y) - h(X_{\tau}^x, Y_{\tau}^y)] \mathbb{1}_{\tau \leq \xi_y},
$$

we obtain an integrable upper bound for $|E_n|$, leading therefore to the desired results, i.e.

there exists an $N > 0$, such that $\forall n \geq N$, we have

$$
v_i(x, \bar{y}_n) - v_i(x, y) \leq \frac{\varepsilon}{2}.
$$

(3.18)

Combining inequalities (3.16), (3.17) and (3.18), we obtain that there exists $N > 0$, such that $\forall n \geq N$, we have

$$
v_i(x_n, y_n) - v_i(x, y) \leq \varepsilon.
$$

(3.19)

Step 2. We use the same arguments as in Step 1 to show that for a given $\varepsilon > 0$, there exists an $N > 0$, such that $\forall n \geq N$, we have $v_i(x, y) - v_i(x_n, y_n) \leq \varepsilon$. This part of the proof is easier as the optimal stopping time from Lemma 3.1 does not depend on n in some cases.

Combining the two steps, we obtain the continuity of v_i on $\mathbb{R} \times \mathbb{R}^+$. □

3.2 Viscosity Characterization of the value function

We shall assume that the following dynamic programming principle holds: for any $(i, x, y) \in \{0, \ldots, m\} \times \mathbb{R} \times (0, \infty)$, for all $\nu \in \mathcal{T}$, we have

$$
(DP) \quad v(i, x, y) = \sup_{\theta \in \mathcal{T}} \mathbb{E}^{i, x, y} [h(X_{\theta}^x, Y_{\theta}^y) \mathbb{1}_{\theta \leq \tau \wedge \nu} + U(e^{X_{\tau}}) \mathbb{1}_{\tau < \theta \wedge \nu} + v(L_{\nu}, X_{\nu}, Y_{\nu}) \mathbb{1}_{\nu < \theta \wedge \nu}].
$$

We then have the PDE characterization of the value functions.

Theorem 3.1 The value functions v_i, $i \in \{0, \ldots, m\}$, are continuous on $\mathbb{R} \times \mathbb{R}^+$, and constitute the unique viscosity solution on $\mathbb{R} \times \mathbb{R}^+$ with growth condition

$$
|v_i(x, y)| \leq |U(e^x)| + |U(e^x)f(y)|,
$$

and boundary condition

$$
\lim_{y \downarrow 0} v_i(x, y) = U(e^x),
$$

to the system of variational inequalities:

$$
\min \left[-L v_i(x, y) - G_i v_i(x, y) - J_i v_i(x, y), v_i(x, y) - U(e^x f(y))\right] = 0, \quad \forall (x, y) \in \mathbb{R} \times \mathbb{R}^+ \text{, and } i \in \{0, \ldots, n\}.
$$

(3.20)

The proof of Theorem 3.1 is based on the following lemmas.
Lemma 3.2 The value functions \((v_i)_{0 \leq i \leq m} \) constitutes a subsolution to the system of variational inequalities (3.20).

Proof of Lemma 3.2. We prove the subsolution property by contradiction. Suppose that the claim is not true. Then there exists \((i, \bar{x}, \bar{y}) \in \{0,1,\ldots,m\} \times \mathbb{R} \times \mathbb{R}^+\), a neighborhood of \(B_{(\bar{x},\bar{y})}(\delta) := \{(x,y) \in \mathbb{R} \times \mathbb{R}^+; |x - \bar{x}| \leq \delta; |y - \bar{y}| \leq \delta\} \) where \(\delta > 0 \), \(C^2 \) functions \(\varphi_i \) \((0 \leq i \leq m)\) with \((\varphi_i - v_i)(\bar{x},\bar{y}) = 0\), and \(\varphi_i \geq v_i \) on \(B_{(\bar{x},\bar{y})}(\delta) \) \((i \in \{0,1,\ldots,m\})\), and \(\eta > 0 \), such that for all \((x,y) \in B_{(\bar{x},\bar{y})}(\delta)\), we have

\[
-L \varphi_i(x,y) - G_i \varphi_i(x,y) \geq J_i \varphi_i(x,y) > \eta,
\]

(3.21)

\[
\varphi_i(x,y) - U(e^x f(y)) > \eta.
\]

(3.22)

We consider the exit time

\[
\tau_\delta := \inf \{ t \geq 0 ; (L_t^\delta X_t^\delta, Y_t^\delta) \not\in \{ \bar{y} \} \times B_{(\bar{x},\bar{y})}(\delta) \}.
\]

Let \(\theta \in \mathcal{T} \), and apply Itô’s Formula to \(\varphi \) between 0 and \(\gamma_\delta := \tau_\delta \wedge \theta \wedge \tau \). Taking an expectation, we obtain

\[
\mathbb{E}^{i,\bar{x},\bar{y}} \left[\varphi_{L_{\gamma_\delta}}(X_{\gamma_\delta}, Y_{\gamma_\delta}) \right] = \varphi_i(\bar{x},\bar{y}) + \mathbb{E}^{i,\bar{x},\bar{y}} \left[\int_0^{\gamma_\delta} (L \varphi_i(X_t, Y_t) + G_i \varphi_i(X_t, Y_t)) dt \right].
\]

From relation (3.21), the above inequality becomes

\[
\varphi_i(\bar{x},\bar{y}) \geq \mathbb{E}^{i,\bar{x},\bar{y}} \left[\varphi_{L_{\gamma_\delta}}(X_{\gamma_\delta}, Y_{\gamma_\delta}) + \int_0^{\gamma_\delta} (\eta + J_i \varphi_i(X_t, Y_t)) dt \right]
\]

\[
\geq \mathbb{E}^{i,\bar{x},\bar{y}} \left[\varphi_{L_{\gamma_\delta}}(X_{\gamma_\delta}, Y_{\gamma_\delta}) + (U(e^{X_t}) - \varphi_i(X_{\gamma_\delta}, Y_{\gamma_\delta})) 1_{\tau < \theta \wedge \tau_\delta} \right] + \eta \mathbb{E}^{i,\bar{x},\bar{y}}[\gamma_\delta]
\]

since \((U(e^{X_t}) - \varphi_i(X_t, Y_t)) 1_{\tau < \theta \wedge \tau_\delta}\) is a martingale on \([0, \gamma_\delta] \). Hence,

\[
\varphi_i(\bar{x},\bar{y}) \geq \mathbb{E}^{i,\bar{x},\bar{y}} \left[U(e^{X_t}) 1_{\tau < \theta \wedge \tau_\delta} + \varphi_{L_{\gamma_\delta}}(X_{\theta \wedge \tau_\delta}, Y_{\theta \wedge \tau_\delta}) 1_{\tau \geq \theta \wedge \tau_\delta} \right] + \eta \mathbb{E}^{i,\bar{x},\bar{y}}[\gamma_\delta]
\]

\[
\geq \mathbb{E}^{i,\bar{x},\bar{y}} \left[U(e^{X_t}) 1_{\tau < \theta \wedge \tau_\delta} + \varphi_i(X_{\theta}, Y_{\theta}) 1_{\theta \leq \tau \wedge \tau_\delta} + \varphi_{L_{\gamma_\delta}}(X_{\tau_\delta}, Y_{\tau_\delta}) 1_{\tau_\delta < \theta \wedge \tau_\delta} \right]
\]

\[
\geq \mathbb{E}^{i,\bar{x},\bar{y}} \left[U(e^{X_t}) 1_{\tau < \theta \wedge \tau_\delta} + U(e^{X_t}) f(Y_\theta) 1_{\theta \leq \tau \wedge \tau_\delta} \right] + \eta \mathbb{E}^{i,\bar{x},\bar{y}}[\gamma_\delta] + \eta \mathbb{E}^{i,\bar{x},\bar{y}}[1 \wedge \tau_\delta \wedge \tau].
\]

Using (3.22) and the fact that \(\varphi_i \geq v_i \) on \(B_{(\bar{x},\bar{y})}(\delta) \) for all \(i \leq m \), we obtain for any \(\theta \in \mathcal{T} \)

\[
\varphi_i(\bar{x},\bar{y}) \geq \mathbb{E}^{i,\bar{x},\bar{y}} \left[U(e^{X_t}) 1_{\tau < \theta \wedge \tau_\delta} + (U(e^{X_\theta} f(Y_\theta)) + \eta) 1_{\tau \leq \theta \wedge \tau_\delta} \right]
\]

\[
\geq \mathbb{E}^{i,\bar{x},\bar{y}} \left[v(L_{\tau_\delta}, X_{\tau_\delta}, Y_{\tau_\delta}) 1_{\tau_\delta < \theta} 1_{\tau \leq \tau_\delta} \right] + \eta \mathbb{E}^{i,\bar{x},\bar{y}}[\gamma_\delta]
\]

\[
\geq \mathbb{E}^{i,\bar{x},\bar{y}} \left[U(e^{X_t}) 1_{\tau < \theta \wedge \tau_\delta} + U(e^{X_t}) f(Y_\theta) 1_{\theta \leq \tau \wedge \tau_\delta} \right] + \eta \mathbb{E}^{i,\bar{x},\bar{y}}[1 \wedge \tau_\delta \wedge \tau].
\]

Using the Dynamic Programming Principle, we obtain

\[
\varphi_i(\bar{x},\bar{y}) \geq v_i(\bar{x},\bar{y}) + \eta \mathbb{E}[1 \wedge \tau_\delta \wedge \tau].
\]

Noticing that \(\eta \mathbb{E}[1 \wedge \tau_\delta \wedge \tau] > 0 \), we obtain the contradiction and therefore leading us to the subsolution property.
Lemma 3.3 The value functions \(v_i, i \in \{0, 1, \ldots, m\} \) constitutes a supersolution to the system of variational inequalities (3.20).

Proof of lemma 3.3 We consider the \(C^2 \) test functions \(\varphi_i \) \((i \in \{0, 1, \ldots, m\})\), such that \(v_i(x, y) = \varphi_i(x, y) \) and \(\varphi_i \leq v_i \) \((i \in \{0, 1, \ldots, m\})\). We can also assume w.l.o.g. that \(\varphi_i(x, y) < v_i(x, y) \) on \(\{0, 1, \ldots, m\} \times \mathbb{R} \times \mathbb{R}^+ \setminus (\bar{i}, \bar{x}, \bar{y}) \). We have to prove that

\[
\min \left[-\mathcal{L}\varphi_i(\bar{x}, \bar{y}) - \mathcal{G}_i\varphi(\bar{x}, \bar{y}) - \mathcal{J}_i\varphi_i(\bar{x}, \bar{y}) - U(e^x f(\bar{y})) \right] \geq 0.
\]

We first note that \(\varphi_i(x, y) = v_i(x, y) \geq U(e^x f(\bar{y})) \), so we just have to show that

\[-\mathcal{L}\varphi_i(\bar{x}, \bar{y}) - \mathcal{G}_i\varphi(\bar{x}, \bar{y}) - \mathcal{J}_i\varphi_i(\bar{x}, \bar{y}) \geq 0. \]

For the state variables starting initially from \((\bar{i}, \bar{x}, \bar{y})\) and a stopping time \(\theta \in \mathcal{T} \), we consider the exit time

\[\tau_\delta = \inf \{ t \geq 0 ; (L^i_t, X^x_t, Y^y_t) \notin \{ \bar{i} \} \times B_{(\bar{x}, \bar{y})}(\delta) \}, \]

where, as before, \(B_{(\bar{x}, \bar{y})}(\delta) := \{(x, y) \in \mathbb{R} \times \mathbb{R}^+ ; |x - \bar{x}| \leq \delta; |y - \bar{y}| \leq \delta\} \).

Using the dynamic programming principle for \(v \) applied to the stopping time \(\tau_\delta \wedge t \), with \(t > 0 \), we find

\[
\varphi_i(\bar{x}, \bar{y}) = v_i(\bar{x}, \bar{y}) \\
\geq \mathbb{E}^{\bar{i}, \bar{x}, \bar{y}} [U(e^{X_\tau}) \mathbb{1}_{\tau < \theta \wedge \tau_\delta \wedge t} + U(e^{X_{\tau}}f(\bar{y})) \mathbb{1}_{\theta \leq \tau \wedge \tau_\delta \wedge t} \\
+ v(L_{\tau_\delta \wedge t}, X_{\tau_\delta \wedge t}, Y_{\tau_\delta \wedge t}) \mathbb{1}_{\tau_\delta \wedge t < \theta \wedge \tau_\delta \wedge t} \\
+ \varphi(L_{\tau_\delta \wedge t}, X_{\tau_\delta \wedge t}, Y_{\tau_\delta \wedge t}) \mathbb{1}_{\tau_\delta \wedge t < \theta \wedge \tau_\delta \wedge t}], \tag{3.23}
\]

for any \(\theta \in \mathcal{T} \).

Now applying Itô’s formula to \(\varphi \) between 0 and \(\tau_\delta := \tau_\delta \wedge \tau \wedge t \), we obtain by taking an expectation

\[
\mathbb{E} [\varphi_{L_{\tau_\delta}}(X_{\tau_\delta}, Y_{\tau_\delta})] = \varphi_i(\bar{x}, \bar{y}) + \mathbb{E} \left[\int_0^{\tau_\delta} (\mathcal{L}\varphi_i + \mathcal{G}_i\varphi_i)(X_t, Y_t) dt \right],
\]

and, with inequality (3.23) with \(\theta > \tau_\delta \wedge t \), we obtain

\[
0 \geq \mathbb{E} \left[\int_0^{\tau_\delta} (\mathcal{L}\varphi_i + \mathcal{G}_i\varphi_i)(X_t, Y_t) dt \right] + \mathbb{E} \left[(U(e^{X_{\tau}}) - \varphi_i(X_{\tau}, Y_{\tau})) \mathbb{1}_{\tau < \theta \wedge \tau_\delta \wedge t} \right] \\
\geq \mathbb{E} \left[\int_0^{\tau_\delta} (\mathcal{L}\varphi_i + \mathcal{G}_i\varphi_i + \mathcal{J}_i\varphi_i)(X_t, Y_t) dt \right].
\]

From the definition of \(\tau_\delta \), we readily see that the integrand part of (3.24) is bounded. Dividing the previous inequality by \(t \) and taking \(t \) to 0, we may apply the dominated convergence theorem and obtain

\[
-(\mathcal{L}\varphi_i + \mathcal{G}_i\varphi_i + \mathcal{J}_i\varphi_i)(\bar{x}, \bar{y}) \geq 0,
\]
leading us to the supersolution property.

Before turning to the uniqueness results, we present the following lemma.

Lemma 3.4 Let \((w_i)_{0 \leq i \leq m}\) be a continuous viscosity supersolution to the system of variational inequalities (3.20) on \(\mathbb{R} \times \mathbb{R}^+\), and consider the following \(C^2\) function:

\[
g(x,y) = \begin{cases}
ax^4 + by^n + k + U(1)\theta(0) + A_1x + \frac{1}{2}A_2x^2 & x \leq 0 \\
ax^4 + by^n + k + U(e^x)\theta(x) & x > 0.
\end{cases}
\]

(3.24)

with \(\theta(x) = \ln(4 + x)\), \(A_1 = U'(1)\theta(0) + U(1)\theta'(0)\), \(A_2 = U''(1)\theta(0) + 2U'(1)\theta'(0) + U(1)\theta''(0)\), \(a\), \(b\) and \(k\) strictly positive constants and \(n \geq c_0\), with \(c_0\) as defined in (2.3).

Let \(w_i^\gamma := (1 - \gamma)w_i + \gamma g, 0 \leq i \leq m\). Then, \((w_i^\gamma)_{0 \leq i \leq m}\) is strict supersolution to the HJB system, i.e., there exists some \(\delta > 0\) such that \((w_i^\gamma)_{0 \leq i \leq m}\) is a supersolution of

\[
\min \left[-Lw_i^\gamma(x,y) - G_iw_i^\gamma(x,y) - J_iw_i^\gamma(x,y) - U(e^xf(y)) \right] \geq \delta, \quad (3.25)
\]

\((i,x,y) \in \{0, \ldots, m\} \times \mathbb{R} \times \mathbb{R}^+\).

Proof The proof of this lemma is quite straightforward and is therefore omitted. \(\square\)

Remark 3.6 We notice that the function \(g\) dominates the upper bound \(U(e^x)\) and the lower bound \(U(f(y)e^x)\) of the value functions when \(|x|\) and \(y\) go to \(\infty\), i.e.,

\[
\lim_{|x|, y \to \infty} \frac{|U(f(y)e^x)| + |U(e^x)|}{g(x,y)} = 0.
\]

Indeed, \(g\) has been precisely constructed to satisfy the above property as well as the strict supersolution property defined in Lemma 3.4.

Lemma 3.5 Let \((u_i)_{0 \leq i \leq m}\) a continuous viscosity subsolution to the system of variational inequalities (3.20) on \(\mathbb{R} \times \mathbb{R}^+\), and \((w_i)_{0 \leq i \leq m}\) a continuous viscosity supersolution to the system of variational inequalities (3.20) on \(\mathbb{R} \times \mathbb{R}^+\), satisfying the boundary conditions

\[
\lim_{y \downarrow 0} u_i(x,y) \leq \lim_{y \downarrow 0} w_i(x,y), \quad i \in \{0, \ldots, m\}, x \in \mathbb{R},
\]

and the following growth condition

\[
|u_i(x,y)| + |w_i(x,y)| \leq |U(e^x)| + |U(e^x f(y))|.
\]

Then,

\[
u_i(x,y) \leq w_i(x,y), \quad \text{on} \quad \mathbb{R} \times \mathbb{R}^+, \quad i \in \{0, \ldots, m\}.
\]

The proof of Lemma 3.5 is postponed in Appendix A.
The proof follows some ideas presented in [22].

We define the following execution and continuation regions:

\[\mathcal{E} = \{(i, x, y) \in \{0, ..., m\} \times \mathbb{R} \times \mathbb{R}^+ \mid v(i, x, y) = h(x, y)\} \]

\[\mathcal{C} = \{0, ..., m\} \times \mathbb{R} \times \mathbb{R}^+ \setminus \mathcal{E}. \]

Clearly, outside the execution region \(\mathcal{E} \), it is never optimal to withdraw the limit order and use a market order. Moreover, the smallest optimal stopping time \(\theta_{i,x,y}^* \) verifies

\[\theta_{i,x,y}^* = \inf \{u \geq 0 \mid (L_u^i, X_u^x, Y_u^y) \in \mathcal{E}\}. \]

We define the \((i, x)\)-sections for every \((i, x) \in \{0, ..., m\} \times \mathbb{R}\) by

\[\mathcal{E}_{(i, x)} = \{y \geq 0 \mid v(i, x, y) = h(x, y)\} \quad \text{and} \quad \mathcal{C}_{(i, x)} = \mathbb{R}^+ \setminus \mathcal{E}_{(i, x)}. \]

Proposition 3.3 (Properties of execution region)

1. \(\mathcal{E} \) is closed in \(\{0, ..., m\} \times \mathbb{R} \times (0, +\infty) \).
2. Let \((i, x) \in \{0, ..., m\} \times \mathbb{R}\).
 - If \(\mathbb{E}^{i,x}[U(e^{X_T})] = U(e^x) \), then, for all \(y \in \mathbb{R}^+ \), \(v(i, x, y) = U(e^x) \) and \(\mathcal{E}_{(i, x)} = \{0\} \).
 - If \(\mathbb{E}^{i,x}[U(e^{X_T})] < U(e^x) \), then \(\mathcal{E}_{(i, x)} \setminus \{0\} \neq \emptyset \) and \(\bar{y}^*(i, x) := \sup \mathcal{E}_{(i, x)} < +\infty. \)

Proof: The proof follows some ideas presented in [22].

1. For all \(i \in \{0, ..., m\}, v_i, U \) and \(f \) are continuous, then \(\mathcal{E} = \bigcup_{i=0}^m [v_i - h]^{-1}(0) \) is a closed set.
2. Let \((i, x) \in \{0, ..., m\} \times \mathbb{R}\). If \(\mathbb{E}^{i,x}[U(e^{X_T})] = U(e^x) \), it follows from Proposition 3.1 that \(v_i(x, y) = U(e^x) \), for all \(y \geq 0 \). As \(f \) is non-increasing, we obviously have \(\mathcal{E}_{(i, x)} = \{0\} \).

Now, we assume that \(\mathbb{E}^{i,x}[U(e^{X_T})] < U(e^x) \) and \(\mathcal{E}_{(i, x)} \setminus \{0\} = \emptyset \). Let \(y \in (0, +\infty) \). We find

\[T_t(i, x, y) := \mathbb{E}^{i,x,y}[h(X_t, Y_t) \mathbb{1}_{t \leq \tau \wedge \xi_y} + U(e^{X_{\tau}}) \mathbb{1}_{t > \tau \wedge \xi_y}] \]

\[\geq \mathbb{E}^{i,x,y}[h(X_t, Y_t) \mathbb{1}_{t \leq \tau} + v(L_{\tau}, X_\tau, Y_\tau) \mathbb{1}_{t > \tau \wedge \xi_y}]. \]

Therefore, letting \(t \) going to \(+\infty \), we have

\[\liminf_{t \to +\infty} T_t(i, x, y) \geq \mathbb{E}^{i,x,y}[v(L_{\tau \wedge \xi_y}, X_{\tau \wedge \xi_y}, Y_{\tau \wedge \xi_y})] = v(i, x, y). \]

The last equality comes from the fact that \(\tau \) is almost surely finite and that the process \((v(L_t, X_t, Y_t))_{0 \leq t}\) is a martingale up to time \(\xi_y = \inf\{t \geq 0 : Y_t^y = 0\} \) since
\[E_{(i,x)} \setminus \{0\} = \emptyset \] implies that \(\xi_y = \theta^*_{i,x,y} \). On the other hand, from the above assumption, we derive the following relation:

\[\limsup_{t \to +\infty} T_t(i, x, y) = \mathbb{E}^{i,x} \left[U(e^{X_t}) \right] < U(e^x). \]

Therefore we have proved that, for all \(y > 0 \),

\[h(x, y) < v(i, x, y) \leq \liminf_{t \to +\infty} T_t(i, x, y) \leq \limsup_{t \to +\infty} T_t(i, x, y) \leq \mathbb{E}^{i,x} \left[U(e^{X_t}) \right]. \]

Since \(f(0) = 1 \), by taking \(y \) going to 0, we obtain the following contradiction \(U(e^x) \leq \mathbb{E}^{i,x} \left[U(e^{X_t}) \right] < U(e^x) \).

Finally, we recall that \(U \) is increasing and \(\lim_{y \to +\infty} f(y) = 0 \). Therefore, we have

\[\lim_{y \to +\infty} v(i, x, y) \geq \mathbb{E}^{i,x} \left[U(e^{X_t}) \right] > U(0) = \lim_{y \to +\infty} h(x, y). \]

It obviously follows that \(\bar{y}^*(i, s) := \sup E_{(i,x)} < +\infty \).

\[\square \]

4 Logarithmic utility

Throughout this section, we assume that the diffusion processes \(X \) and \(Y \) are governed by the following SDE, which are particular cases of (2.1) and (2.4)

\[
\begin{align*}
\frac{dX_t}{dt} &= \mu dt + \sigma(X_t) dB_t; \quad X_0 = x \\
\frac{dY_t}{dt} &= \kappa (\beta - Y_t) dt + \gamma \sqrt{Y_t} dW_t; \quad Y_0 = y
\end{align*}
\]

where \(\mu, \kappa, \beta \) and \(\gamma \) are constant. We first notice that the supermeanvalued assumption combined with the logarithmic utility function implies that \(\mu \leq 0 \). Moreover, if \(\mu = 0 \), we have seen that \(v(i, x, y) = U(e^y) \) and \(\mathcal{E}_{(i,x)} = \{0\} \) (see Proposition 3.3), so we shall assume throughout this section that \(\mu < 0 \).

The following theorem shows that in the logarithmic case, we can reduce the dimension of the problem by factoring out the \(x \)-variable. For this purpose, we define \(\mathcal{T}_{L,W} \) the set of stopping times with respect to the filtration generated by \((L, W) \), and the differential operator \(\mathcal{L}\phi(y) := \frac{1}{2} \gamma^2 y \frac{\partial^2 \phi}{\partial y^2} + \kappa(\beta - y) \frac{\partial \phi}{\partial y} + \mu \), for \(\phi \in C^2(\mathbb{R}^+) \).

Theorem 4.2 For \((i, y) \in \{1, \ldots, m\} \times \mathbb{R}^+ \) we define the function:

\[w(i, y) = \sup_{\theta \in \mathcal{T}_{L,W}} \mathbb{E}^{i,y}[\mu(\theta \land \tau) + \ln (f(Y_\theta)) \, 1_{\{\theta \leq \tau\}}]. \]

Then,

\[v(i, x, y) = x + w(i, y) \text{ on } \{0, \ldots, m\} \times \mathbb{R} \times \mathbb{R}^+, \]
with \(w \) the unique viscosity solution to the system of equations:

\[
\min \left[-\bar{\Omega}w(i, y) + \lambda_i w(i, y) - \sum_{j \neq i} \vartheta_{i,j} (w(j, y) - w(i, y)) \right. \\
\left. + w(i, y) - g(y) \right] = 0, \tag{4.26}
\]

where \(g(y) := \ln(f(y)) \). Moreover, the functions \(w(\cdot, \cdot) \) are of class \(C^1 \) on \(\mathbb{R}^+ \) and \(C^2 \) on the open set \(\mathcal{C}_{i,x} \cup \text{Int}(\mathcal{E}_{i,x}) \).

Proof: We first notice that

\[
v(i, x, y) = \sup_{\theta \in \mathcal{T}} \mathbb{E}^{i,x,y}[X_{\theta \wedge \tau} + \ln(f(Y_\theta)) \mathbbm{1}_{\theta \leq \tau}] \text{ on } \{0, \ldots, m\} \times \mathbb{R} \times \mathbb{R}^+.
\]

Moreover, for \((i, x, x', y) \in \{0, \ldots, m\} \times \mathbb{R}^2 \times \mathbb{R}^+ \), we have

\[
v(i, x', y) - v(i, x, y) \leq \sup_{\theta \in \mathcal{T}} \mathbb{E}^{i,x,y}[X_{\theta \wedge \tau}|L_0 = i] - \mathbb{E}^{i,x,y}[X_{\theta \wedge \tau}|L_0 = i] = x' - x.
\]

On the other hand, we have

\[
v(i, x', y) - v(i, x, y) \geq \mathbb{E}^{i,x',y}[X_{\theta_{i,x,y}^* \wedge \tau}|L_0 = i] - \mathbb{E}^{i,x,y}[X_{\theta_{i,x,y}^* \wedge \tau}|L_0 = i] = x' - x.
\]

It follows that there exists a function \(w \) defined on \(\{0, \ldots, m\} \times \mathbb{R}^+ \) such that \(v(i, x, y) = x + w(i, y) \). Then, \(\theta_{i,x,y}^* := \inf \{ u \geq 0 \mid (L_u^i, X_u^x, Y_u^y) \in \mathcal{E} \} = \inf \{ t \geq 0 : w(L_t^i, Y_t^y) = \ln(f(Y_t^y)) \} =: \theta_{i,x,y}^* \), belongs to \(\mathcal{T}_{L,\mathcal{W}} \). Hence, we have

\[
w(i, y) = \sup_{\theta \in \mathcal{T}_{L,\mathcal{W}}} \mathbb{E}^{i,y}[\mu(\theta \wedge \tau) + \ln(f(Y_\theta)) \mathbbm{1}_{\theta \leq \tau}].
\]

We deduce from Theorem 3.1 that \((w_i)_{0 \leq i \leq m} \) is the unique continuous viscosity solution of the system of equation (4.26). We conclude the proof by asserting that the fact that \(w(i, \cdot) \) is of class \(C^1 \) on \(\mathbb{R}^+ \) and \(C^2 \) on the open set \(\mathcal{C}_{i,x} \cup \text{Int}(\mathcal{E}_{i,x}) \) for all \(i \in \{1, \ldots, m\} \) can be established by following the proof of Proposition 3.3 in [15]. \(\square \)

Remark 4.7 From Theorem 4.2, we notice that the \((i, x)\)-sections of the execution region \(\mathcal{E}_{i,x} \) do not depend on \(x \). For convenience we denote them by \(\mathcal{E}_{i,\cdot} \) in this section. In the same way, we write \(\mathcal{C}_{i,\cdot} := \mathcal{C}_{i,x} \).

4.1 Execution region

Proposition 4.4 Let \(i \in \{0, \ldots, m\} \) and set

\[
y_i = \inf \{ y \geq 0 : \mathcal{H}_i g(y) \geq 0 \} \text{ with } \mathcal{H}_i g(y) = \bar{\Xi} g(y) - \lambda_i g(y) + \sum_{j \neq i} \vartheta_{i,j} (w(j, y) - g(y)).
\]

There exists \(y_i^* \geq 0 \) such that \([0, y_i^*] = \mathcal{E}_{i,\cdot} \cap [0, \tilde{y}_i] \). Moreover, \(w(i, \cdot) - g(\cdot) \) is non-decreasing on \([y_i^*, \tilde{y}_i] \).

Proof: Let \(y_i^* = \inf \{ y \geq 0 : w(i, y) > g(y) \} \). Notice that

\[
\mathcal{H}_i g(0) = \mu + \kappa \beta g'(0) < 0,
\]
since \(\mu < 0 \) and \(g'(0) < 0 \). Hence, \(\hat{y}_i > 0 \). As we have \(\mathcal{H}_i w(i, y) \leq 0 \) on \(\mathbb{R}^+ \), we have \(y_i^* \leq \hat{y}_i \). If \(y_i^* = \hat{y}_i \), the result is obvious so we shall assume that \(y_i^* < \hat{y}_i \). For all \(z \in (y_i^*, \hat{y}_i) \cap \mathcal{C}(i,.) \), we have
\[
\frac{\gamma^2 z}{2} \frac{\partial^2 w}{\partial y^2}(i, z) = -\kappa(\beta - z) \frac{\partial w}{\partial x}(i, z) + \lambda_i w(i, z) - \sum_{j \neq i} \vartheta_{i,j} (w(j, z) - w(i, z)) - \mu.
\]
Therefore, if we set \(d_i = w(i, \cdot) - g(\cdot) \), we find
\[
\frac{\gamma^2 z}{2} d''_i(z) \geq -\kappa(\beta - z) d'_i(z) + \left(\lambda_i + \sum_{j \neq i} \vartheta_{i,j} \right) d_i(x) - \sup_{z' \in [y_i^*, z]} \mathcal{H}_i g(z'). \quad (4.27)
\]
From the definition of \(y_i^* \), there exists a sequence \((z_n)_{n \geq 0} \) taking values in \((y_i^*, \hat{y}_i) \cap \mathcal{C}(i,.) \) and such that \(\lim_{n \to +\infty} z_n = y_i^* \). It follows from the smooth fit property and from (4.27) that
\[
\lim_{z \searrow y_i^*} \frac{\gamma^2 z}{2} d''_i(z) \geq -\mathcal{H}_i g(y_i^*) > 0.
\]
It implies that \(y_i^* < \xi_i \) where \(\xi_i := \inf\{ z > y_i^* : d_i(z) = 0 \text{ or } d'_i(z) < 0 \} \). Assume that \(\xi_i < \hat{y}_i \). As \(d_i \) is increasing on \((y_i^*, \xi_i) \), we have \(d_i(\xi_i) > 0 \) and \(d'_i(\xi_i) = 0 \). However, it leads to a contradiction because (4.27) implies that \(d''_i(\xi_i) > 0 \).

Proposition 4.5 Assume that the function \(y \to \mathcal{L} g(y) \) is non-decreasing on \(\mathbb{R}^+ \), then for all \(i \in \{0, \ldots, m\} \), \(w(i, \cdot) - g(\cdot) \) is non-decreasing on \(\mathbb{R}^+ \) and we have \(\mathcal{E}(i,.) = [0, y_i^*] \), with \(y_i^* > 0 \).

Proof: Let \(i \in \{0, \ldots, m\} \) and \(0 \leq y < z \). We introduce the following stopping time
\[
\theta_{yz} = \inf\{ t \geq 0 : Y^y_t = Y^z_t \}.
\]
As \(g \) is non increasing, we have
\[
w(i, z) - w(i, y) \geq \mathbb{E}\left[\left(g(Y^z_{\theta_{yz}}) - g(Y^y_{\theta_{yz}}) \right) \mathbb{1}_{\{\theta_{yz} < r\}} \right] = \mathbb{E}\left[\left(g(Y^z_{\theta_{yz} \wedge \theta_{yz}}) - g(Y^y_{\theta_{yz} \wedge \theta_{yz}}) \right) \mathbb{1}_{\{\theta_{yz} < r\}} \right] \geq \mathbb{E}\left[\left(g(Y^z_{\theta_{yz} \wedge \theta_{yz}}) - g(Y^y_{\theta_{yz} \wedge \theta_{yz}}) \right) \right].
\]
Applying Itô formula, it follows from the fact that \(\mathcal{L} g \) is non decreasing that
\[
w(i, z) - w(i, y) \geq g(z) - g(y) + \mathbb{E}\left[\int_0^{\theta_{yz} \wedge \theta_{yz}} \mathcal{L} g(Y^z_u) - \mathcal{L} g(Y^y_u) \, du \right] \geq g(z) - g(y).
\]
\[\square\]

Remark 4.8 If we set \(f(y) = e^{-y} \) on \(\mathbb{R}^+ \), we have \(\mathcal{L} g(y) = \kappa(y - \beta) \) so the assumption of Proposition 4.5 is satisfied.
4.2 Logarithmic utility with no-switch (case \(\vartheta_{i,j} = 0 \ \forall i \neq j \))

Let \(i \in \{1, \ldots, m\} \). Throughout this section, we shall assume that \(\vartheta_{i,j} = 0 \ \forall i \neq j \).

Proposition 4.6 If \(\mathcal{E}_{(i, \cdot)} = [0, y_i^*] \) then \(y_i^* \) is the solution of the following equation

\[
\frac{g(y_i^*) - \frac{\mu}{\lambda_i}}{g'(y_i^*)} = -\frac{\gamma^2}{2\lambda_i} \frac{\Psi \left(\frac{\lambda_i}{\kappa}, \frac{2\kappa\beta}{\gamma^2}, \frac{2\kappa}{\gamma^2} y_i^* \right)}{\Psi \left(\frac{\lambda_i}{\kappa}, 1 + \frac{2\kappa\beta}{\gamma^2}, \frac{2\kappa}{\gamma^2} y_i^* \right)},
\]

and \(w(i, \cdot) \) is given by

\[
w(i, y) = \begin{cases}
g(y) & y \leq y_i^* \\
g(y_i^*) - \frac{\mu}{\lambda_i} \frac{\lambda_i}{\kappa} \frac{\Psi \left(\frac{\lambda_i}{\kappa}, \frac{2\kappa\beta}{\gamma^2}, \frac{2\kappa}{\gamma^2} y_i^* \right)}{\Psi \left(\frac{\lambda_i}{\kappa}, \frac{2\kappa\beta}{\gamma^2}, \frac{2\kappa}{\gamma^2} y_i^* \right)} + \frac{\mu}{\lambda_i} \eta_i(y) & y > y_i^*, \end{cases}
\]

where \(\Psi \) denotes the confluent hypergeometric function of second kind (see Appendix B).

Proof: We start analyzing the following differential equation:

\[
-\frac{1}{2} \gamma^2 y \phi''(y) - \kappa (\beta - y) \phi'(y) + \lambda_i \phi(y) - \mu = 0.
\]

The solution is \(\eta_i(y) = a_i \Phi \left(\frac{\lambda_i}{\kappa}, \frac{2\kappa\beta}{\gamma^2}, \frac{2\kappa}{\gamma^2} y \right) + b_i \Psi \left(\frac{\lambda_i}{\kappa}, \frac{2\kappa\beta}{\gamma^2}, \frac{2\kappa}{\gamma^2} y \right) + \frac{\mu}{\lambda_i} \), where \(a_i, b_i \in \mathbb{R}^2 \) and \(\Phi \) and \(\Psi \) are respectively the confluent hypergeometric functions of the first and second kind, see Appendix B. As \(\mathcal{E}_{(i, \cdot)} = [0, y_i^*] \), there exists \(a_i, b_i \in \mathbb{R} \) such that

\[
w(i, y) = \begin{cases}
g(y) & 0 \leq y \leq y_i^* \\
g(y_i^*) - \frac{\mu}{\lambda_i} \frac{\lambda_i}{\kappa} \frac{\Psi \left(\frac{\lambda_i}{\kappa}, \frac{2\kappa\beta}{\gamma^2}, \frac{2\kappa}{\gamma^2} y_i^* \right)}{\Psi \left(\frac{\lambda_i}{\kappa}, \frac{2\kappa\beta}{\gamma^2}, \frac{2\kappa}{\gamma^2} y_i^* \right)} + \frac{\mu}{\lambda_i} \eta_i(y) & y > y_i^*. \end{cases}
\]

From Proposition 3.1, \(w(i, \cdot) \) is non-increasing on \([0, +\infty)\), as such \(\lim_{y \to \infty} w(i, y) \) exists. The coefficient \(a_i \) of the confluent hypergeometric function of first kind is then equal to zero, since \(\Phi \) does not admit a limit, see Appendix B.

From Theorem 4.2, \(w(i, \cdot) \) is \(C^1([0, +\infty)) \). Using the continuity of \(w(i, \cdot) \) and \(w'(i, \cdot) \) at \(y_i^* \), we obtain two conditions which depend linearly on the parameter \(b_i \), as such, we obtain relation (4.28). For explicit details on the derivatives of the confluent hypergeometric functions, we refer to Appendix B.

\[\square\]

4.3 Logarithmic utility with switch between two regimes

Now, we assume that there are two liquidity regimes (i.e., \(m = 1 \)) and \(\vartheta_{0,1} \vartheta_{1,0} \neq 0 \) since otherwise it would be equivalent to the no-switching case. We also assume that, for both \(i = 0, 1 \), there exists \(y_i^* > 0 \) such that \(\mathcal{E}_{(i, \cdot)} = [0, y_i^*] \).

Let \(\Lambda \) be the matrix

\[
\Lambda = \begin{pmatrix} \lambda_0 + \vartheta_{0,1} & -\vartheta_{0,1} \\ -\vartheta_{1,0} & \lambda_1 + \vartheta_{1,0} \end{pmatrix}.
\]

(4.31)
As $\vartheta_{0,1}\vartheta_{1,0} > 0$ it is easy to check that Λ has two eigenvalues $\tilde{\lambda}_0$ and $\tilde{\lambda}_1 < \tilde{\lambda}_0$. Let $\tilde{\Lambda} = P^{-1}\Lambda P$ be the diagonal matrix with diagonal $(\tilde{\lambda}_0, \tilde{\lambda}_1)$. The transition matrix P is denoted by

$$P = \begin{pmatrix} p^0_0 & p^0_1 \\ p^1_0 & p^1_1 \end{pmatrix}.$$

(4.32)

Without loss of generality, we shall assume that $p^0_0 + p^0_1 = 1 = p^1_0 + p^1_1$, indeed $(1, -1)$ is not an eigenvector of Λ as $\lambda_0 > \lambda_1$.

Proposition 4.7 With the above assumptions, we obtain $y^*_0 \leq y^*_1$.

Proof: Assume that $y^*_1 < y^*_0$ and set $d(y) := w(0, y) - w(1, y)$ on \mathbb{R}^+. We obviously have $d'(y_1^*) \leq 0$ and we set $\hat{y} := \inf\{y > y_1^* : d'(y) = 0\}$.

As we have $\lim_{y \to +\infty} w(1, y) = \frac{\mu}{\lambda_1} - \frac{\mu}{\lambda_0} = \lim_{y \to +\infty} w(0, y) < 0$, we know that $\hat{y} < +\infty$. From Proposition 4.4, we know that the function $y \mapsto w(1, y) - g(y)$ is increasing on (y_1^*, \hat{y}). Moreover, for $y \leq y_0^*$, we have

$$0 \geq \mathcal{H}_0 g(y) = \mathcal{H}_1 g(y) + \vartheta_{0,1}(w(1, y) - g(y)) - (\lambda_0 - \lambda_1)g(y) \geq \mathcal{H}_1 g(y).$$

Therefore, we find $y_0^* < \hat{y}$ and $\hat{y} \in \mathcal{C}_{(0,\cdot)} \cap \mathcal{C}_{(1,\cdot)}$. We then obtain

$$0 = \mathcal{H}_1 w(1, \hat{y}) - \mathcal{H}_0 w(0, \hat{y}) = \frac{\gamma^2 \hat{y}}{2} d''(\hat{y}) - \lambda_1 w(1, \hat{y}) + \lambda_0 w(0, \hat{y}) - (\vartheta_{0,1} + \vartheta_{1,0})d(\hat{y}).$$

Hence, we have

$$\frac{\gamma^2 \hat{y}}{2} d''(\hat{y}) = (\lambda_0 + \vartheta_{0,1} + \vartheta_{1,0})d(\hat{y}) - (\lambda_0 - \lambda_1)w(1, \hat{y}) < 0,$$

which leads to a contradiction. \qed
Proposition 4.8 The function w is given by

$$w(0, y) = \begin{cases}
g(y) & \text{if } y \in [0, y_0^*] \\
\widehat{\Phi} \left(\frac{\lambda_0 + \vartheta_{0,1}}{\kappa}, \frac{2\kappa \beta}{\gamma^2}, \frac{2\kappa}{\gamma^2} y \right) + \widehat{\Psi} \left(\frac{\lambda_0 + \vartheta_{0,1}}{\kappa}, \frac{2\kappa \beta}{\gamma^2}, \frac{2\kappa}{\gamma^2} y \right) + \mathcal{L} \left(\frac{2\kappa}{\gamma^2}, \beta, -2 \frac{\lambda_0 + \vartheta_{0,1}}{\gamma^2}, 2 \frac{\vartheta_{0,1} g(\cdot) + \mu}{\gamma^2} \right) & \text{if } y \in (y_0^*, y_1^*] \\
\hat{p}_0 \left[\widehat{\Phi} \left(\frac{\lambda_0}{\kappa}, \frac{2\kappa \beta}{\gamma^2}, \frac{2\kappa}{\gamma^2} x \right) + \frac{\mu}{\lambda_0} \right] & \text{if } y \in (y_1^*, y_2^*] \\
+ \hat{p}_1 \left[\widehat{\Psi} \left(\frac{\lambda_1}{\kappa}, \frac{2\kappa \beta}{\gamma^2}, \frac{2\kappa}{\gamma^2} x \right) + \frac{\mu}{\lambda_1} \right] & \text{if } y \in (y_2^*, \infty)
\end{cases}$$

(4.33)

$$w(1, y) = \begin{cases}
g(y) & \text{if } y \in [0, y_1^*] \\
\left[\hat{p}_0 \left[\widehat{\Phi} \left(\frac{\lambda_0}{\kappa}, \frac{2\kappa \beta}{\gamma^2}, \frac{2\kappa}{\gamma^2} y \right) + \frac{\mu}{\lambda_0} \right] + \hat{p}_1 \left[\widehat{\Psi} \left(\frac{\lambda_1}{\kappa}, \frac{2\kappa \beta}{\gamma^2}, \frac{2\kappa}{\gamma^2} y \right) + \frac{\mu}{\lambda_1} \right] \right] & \text{if } y \in (y_1^*, \infty)
\end{cases}$$

where Φ and Ψ denote respectively the confluent hypergeometric function of first and second kind, and \mathcal{L} is a particular solution to the non-homogeneous confluent differential equation. Moreover, $(y_0^*, y_1^*, \widehat{\Phi}, \hat{p}, \mathcal{L}, \widehat{\Psi}, \hat{f})$ are such that $w(0, y)$ and $w(1, y)$ belong to $C^1(\mathbb{R}^+)$.

Proof: We have

$$-\mathcal{L} w(i, y) - \sum_{j \neq i} \vartheta_{i,j} (w(j, y) - w(i, y)) + \lambda_i w(i, y) - \mu = 0 \quad \forall i = 0, 1 \quad \forall y > y_i^*.$$

From Proposition 4.7, we have $y_0^* \leq y_1^*$. We may therefore distinguish two regions:

- $\mathcal{C}_0 \cap \mathcal{E}_1$, the region where it is optimal to execute when the state of liquidity is in regime 1 and not to execute when it is in regime 0. This region is the interval (y_0^*, y_1^*), which may be empty when $y_1^* = y_0^*$.

- $\mathcal{C}_0 \cap \mathcal{C}_1$ which corresponds to $(y_1^*, +\infty)$, where it is never optimal to execute regardless of the liquidity state.

We start with an analysis of the region $\mathcal{C}_0 \cap \mathcal{E}_1$. For all $y \in \mathcal{C}_0 \cap \mathcal{E}_1$ we have

$$w(1, y) = g(y)$$

$$-\mathcal{L} w(0, y) = \vartheta_{0,1} (w(0, y) - g(y)) + \lambda_0 w(0, y) - \mu.$$

The function $w(0, \cdot)$ is solution of a non-homogeneous ordinary differential equation. The general solution is a linear combination of the two confluent hypergeometric functions and
a particular solution in order to verify the non-homogeneous part. This particular solution may be obtained with the usual method of variation of parameters. See Appendix B in this regard. A straightforward computation shows that the expression for \(w(1, \cdot) \) as given in (4.33) satisfies the ODE.

We now analyze the region \(C_0 \cap C_1 \). For all \(y \in C_0 \cap C_1 \) we have

\[
\begin{align*}
\mathcal{T} w(1, y) &= -\vartheta_{1,0} (w(0, y) - w(1, y)) + \lambda_1 w(1, y) - \mu \\
\mathcal{T} w(0, y) &= -\vartheta_{0,1} (w(1, y) - w(0, y)) + \lambda_0 w(0, y) - \mu.
\end{align*}
\]

We recall that the operator \(\mathcal{T} \) does not depend on the liquidity state \(i \). Then, we consider the two linear combinations \(\tilde{w}(0, y) = p^0 w(0, y) + p^1 w(1, y) \) and \(\tilde{w}(1, y) = p^0 w(0, y) + p^1 w(1, y) \).

As such, the pair \((\tilde{w}(0, y), \tilde{w}(1, y)) \) satisfies

\[
\begin{align*}
\mathcal{T} \tilde{w}(1, y) &= \tilde{\lambda}_1 \tilde{w}(1, y) - \mu \\
\mathcal{T} \tilde{w}(0, y) &= \tilde{\lambda}_0 \tilde{w}(0, y) - \mu.
\end{align*}
\]

The above two ODEs are independent and are of the confluent hypergeometric kind. The general solution is a linear combination of the two confluent hypergeometric functions plus a particular solution, which could be chosen as a constant. Moreover, since the value function is decreasing in \(y \) and therefore admits a limit when \(y \) goes to infinity, the coefficient of the confluent hypergeometric function of the first kind must be zero since this function does not have a limit when \(y \) goes to infinity. We therefore obtain the expressions for \(w(0, \cdot) \) and \(w(1, \cdot) \) on the interval \((y_1^*, \infty) \) as written in (4.33).

Finally, the two functions \(w(0, \cdot) \) and \(w(1, \cdot) \) belong to \(C^1 \), so that the free parameters \((y_0^*, y_1^*, \hat{c}, \hat{d}, \hat{e}, \hat{f}) \) may be chosen in order to preserve the continuity and the differentiability of the two functions at points \(y_0^* \) and \(y_1^* \).

Corollary 4.1 Assume \(f(y) = e^{-y} \), we have

\[
\mathcal{I} \left(\frac{2\kappa}{\gamma^2}, \beta, -\frac{\lambda_0 + \vartheta_{0,1}}{\gamma^2}, 2 \frac{\vartheta_{0,1} g(\cdot) + \mu}{\gamma^2} \right) (y) = \frac{\mu - \kappa \beta}{\kappa + \lambda_0 + \vartheta_{0,1}} - \frac{\vartheta_{0,1}}{\kappa + \lambda_0 + \vartheta_{0,1}} y. \quad (4.34)
\]

The explicit system of equations satisfied by \((y_0^*, y_1^*, \hat{c}, \hat{d}, \hat{e}, \hat{f}) \) is linear with respect to \((\hat{c}, \hat{d}, \hat{e}, \hat{f}) \) and is detailed in Appendix B (see (B.49)).

5 Power utility

Throughout this section, we assume that \(U(s) = s^a \) with \(0 < a \leq 1 \) and that \(\mu \) and \(\sigma \) are constant. The diffusion processes \(X \) and \(Y \) are governed by the following SDE, which are particular cases of (2.1) and (2.4),

\[
\begin{align*}
\mu & = \mu dt + \sigma dB_t \\
\kappa (\beta - Y_t) dt + \sqrt{\gamma} Y_t dW_t.
\end{align*}
\]

We first notice that the supermeanvalued assumption implies that \(\mu a + \sigma^2 a^2 / 2 \leq 0 \). If
we have seen that \(v(i, x, y) = U(e^x)\) and \(\mathcal{E}_{(i,x)} = \{0\}\) (see Proposition 3.3).

We shall then assume throughout this section that \(\mu a + \frac{\sigma^2 a^2}{2} < 0\).

Recall that \(T_{L,W}\) is the set of stopping times with respect to the filtration generated by \((L, W)\). In the power utility case, the differential operator \(\hat{L}\) is given by

\[
\hat{L}\phi (y) = \frac{1}{2} \gamma^2 y \frac{\partial^2 \phi}{\partial y^2} + \left[\kappa (\beta - y) + \rho \sigma a \sqrt{y} \right] \frac{\partial \phi}{\partial y} + \left[\frac{\sigma^2 a^2}{2} + \mu a \right] \phi (y).
\]

Theorem 5.3 For \((i, y) \in \{1, \ldots, m\} \times \mathbb{R}^+,\) define

\[
u (i, x, y) = e^{ax} u(i, y) \quad \text{on} \quad \{1, \ldots, m\} \times \mathbb{R} \times \mathbb{R}^+,
\]

with \(u\) the unique viscosity solution of the system of equations:

\[
\min \left[- \hat{L} u(i, y) - \lambda_i (1 - u(i, y)) - \sum_{j \neq i} \partial_{i,j} (u(j, y) - u(i, y)) , u(i, y) - g(y) \right] = 0 \quad (5.35)
\]

where \(g(y) := (f(y))^a\). Moreover, the functions \(u(i, .)\) are of class \(C^1\) on \(\mathbb{R}^+\) and \(C^2\) on the open set \(\mathcal{C}_{(i,x)} \cup \text{Int}(\mathcal{E}_{(i,x)})\).

Proof: We first notice that

\[
u (i, x, y) = \sup_{\theta \in \mathcal{T}} \mathbb{E}^{i,y} [e^{x \Phi_{\theta \wedge \tau} - 1} \mathbb{I}_{\{\theta \leq \tau\}} + 1] \quad \text{on} \quad \{0, \ldots, m\} \times \mathbb{R} \times \mathbb{R}^+.
\]

Moreover, for \((i, x, x', y) \in \{0, \ldots, m\} \times \mathbb{R}^2 \times \mathbb{R}^+\), we have

\[
e^{-a x'} \nu (i, x', y) - e^{-a x} \nu (i, x, y) = 0.
\]

Indeed, if we set \(\hat{B} = \frac{1}{1 - \rho^2} (B - \rho W)\), we have

\[
e^{-a x} \nu (i, x, y) = \sup_{\theta \in \mathcal{T}} \mathbb{E}^{i,y} [e^{\mu \Theta_{\theta \wedge \tau} + \sigma \Phi_{\theta \wedge \tau} - 1} \mathbb{I}_{\{\theta \geq \tau\}} + g(Y_{\theta}) \mathbb{I}_{\{\theta \leq \tau\}} + 1] \quad \text{on} \quad \{0, \ldots, m\} \times \mathbb{R} \times \mathbb{R}^+.
\]

It follows that there exists a function \(u\) defined on \(\{0, \ldots, m\} \times \mathbb{R}^+\) such that \(\nu (i, x, y) = e^{ax} u(i, y)\) and \(\theta_{i xy} = \inf\{t \geq 0 : u(L_t^i, Y_t^y) = (f(Y_t^y))^a\} = \theta_{i y}^*\), belongs to the set of stopping times with respect to the filtration generated by \((L, X)\), denoted by \(T_{L,W}\). Hence, we have \(u(i, x, y) = e^{ax} u(i, y)\) where

\[
u (i, y) = \sup_{\theta \in T_{L,W}} \mathbb{E}^{i,y} [e^{\mu \Theta_{\theta \wedge \tau} + \sigma \Phi_{\theta \wedge \tau} - 1} \mathbb{I}_{\{\theta \geq \tau\}} + g(Y_{\theta}) \mathbb{I}_{\{\theta \leq \tau\}} + 1].
\]

We deduce from Theorem 3.1 that \((u(i, \cdot))_{0 \leq i \leq m}\) are the unique continuous viscosity solutions of the system of equations (5.35). We conclude the proof by asserting that \(u(i, \cdot)\) is
of class C^1 on \mathbb{R}^+ and C^2 on the open set $C_{(i,x)} \cup \text{Int}(\mathcal{E}_{(i,x)})$ for all $i \in \{1, \ldots, m\}$. It can be established by following the proof of Proposition 3.3 in [15].

In Proposition 5.9, 5.10, and 5.11, we give similar results to those presented in the previous section. We shall omit their proof as they may be done using the same arguments as in the previous section. We begin by the next Proposition which summarizes some criteria implying that the execution region is an intervalle.

Proposition 5.9 (Execution region)

Let $i \in \{0, \ldots, m\}$ and set $\hat{y}_i = \inf\{y \geq 0 : \mathcal{H}_i g(y) \geq 0\}$ with $\mathcal{H}_i g(y) = \hat{L} g(y) + \lambda_i (1 - g(y)) + \sum_{j \neq i} \vartheta_{i,j} (u(j, y) - g(y))$.

There exists $y_i^* \geq 0$ such that for all $x \in \mathbb{R}$, $[0, y_i^*] = \mathcal{E}_{(i,x)} \cap [0, \hat{y}_i]$. Moreover, $u(i, \cdot) - g(\cdot)$ is non-decreasing on $[y_i^*, \hat{y}_i]$.

Assume that the function $y \to \hat{L} g(y)$ is non decreasing on \mathbb{R}^+, then for all $i \in \{0, \ldots, m\}$, $u(i, \cdot) - g(\cdot)$ is non-decreasing on \mathbb{R}^+. Especially, for all $x \in \mathbb{R}$, $[0, y_i^*] = \mathcal{E}_{(i,x)}$.

Proposition 5.10 (Power utility with no-switch)

Let $(i, x) \in \{1, \ldots, m\} \times \mathbb{R}$. We assume that $\rho = 0$, $\vartheta_{i,j} = 0$ for all $j \neq i$ and that there exists $y_i^* \geq 0$ such that $\mathcal{E}_{(i,x)} = [0, y_i^*]$. If we set $\lambda_i^{(a)} := \lambda_i - \frac{\sigma^2}{2} \gamma^2 - \mu$, then y_i^* is the solution of

$$
\frac{g(y_i^*) - \frac{\lambda_i}{\lambda_i^{(a)}}}{g'(y_i^*)} = -\frac{\gamma^2}{2\lambda_i^{(a)}} \frac{\Psi\left(\frac{\lambda_i^{(a)}}{\kappa}, \frac{2\kappa\beta}{\gamma^2}, \frac{2\kappa}{\gamma^2} y_i^*\right)}{\Psi\left(\frac{\lambda_i}{\kappa}, 1, \frac{2\kappa\beta}{\gamma^2} + 1, \frac{2\kappa}{\gamma^2} y_i^*\right)}.
$$

(5.36)

The function $u(i, \cdot)$ is given by

$$
u(i, y) = \begin{cases}
 g(y) & \text{if } y \leq y_i^* \\
 \frac{g(y_i^*) - \frac{\lambda_i}{\lambda_i^{(a)}}}{\Psi\left(\frac{\lambda_i}{\kappa}, \frac{2\kappa\beta}{\gamma^2}, \frac{2\kappa}{\gamma^2} y_i^*\right)} \Psi\left(\frac{\lambda_i^{(a)}}{\kappa}, \frac{2\kappa\beta}{\gamma^2}, \frac{2\kappa}{\gamma^2} y_i^*\right) + \frac{\lambda_i}{\lambda_i^{(a)}} & \text{if } y > y_i^*.
\end{cases}
$$

(5.37)

The proof is omitted as it may be done using the same arguments as in Proposition 4.6.

Proposition 5.11 (The two-regime case)

Assume that $m = 1$, $\rho = 0$ and, for all $i \in \{0, 1\}$, $\mathcal{E}_{(i,s)} = [0, y_i^*]$. We then have $y_0^* \leq y_1^*$.
and the function \(u \) is given by

\[
\begin{align*}
\begin{aligned}
\mathcal{C} & = \frac{\lambda_0^{(a)} + \theta_0, \beta}{\lambda_0 y^2} + \bar{d} \Psi \left(\frac{\theta_0}{\lambda_0}, \frac{2\kappa}{\gamma^2}, y \right) & \quad y \in [0, y_0] \\
\mathcal{C} & = \frac{\lambda_0^{(a)} + \theta_0, \beta}{\lambda_0 y^2} + \bar{d} \Psi \left(\frac{\theta_0}{\lambda_0}, \frac{2\kappa}{\gamma^2}, y \right) & \quad y \in [0, y_0] \\
\mathcal{C} & = \bar{d} \Psi \left(\frac{\theta_0}{\lambda_0}, \frac{2\kappa}{\gamma^2}, y \right) & \quad y \in (y_0, \infty)
\end{aligned}
\end{align*}
\]

where \(\Phi \) and \(\Psi \) denote respectively the confluent hypergeometric function of first and second kind and \((y_0, y_1, \bar{c}, \bar{d}, \bar{e}, \bar{f})\) are such that \(u(0, y) \) and \(u(1, y) \) belong to \(C^1(\mathbb{R}^+) \).

Proof. The proof is omitted as it is based on the same arguments used in Propositions 4.7 and 4.8.

A Proof of comparison principle

Proof of lemma 3.5: In order to prove the comparison principle, it suffices to show that for all \(\gamma \in (0, 1) \):

\[
\max_{i \in \{0, \ldots, m\}} \sup_{y \in \mathbb{R}^+} (u_i - w_i^\gamma) \leq 0,
\]

since the required result is obtained by letting \(\gamma \to 0 \).

We argue by contradiction and suppose that there exist some \(\gamma \in (0, 1) \) and \(i \in \{0, \ldots, m\} \), s.t.

\[
\theta := \max_{j \in \{0, \ldots, m\}} \sup_{y \in \mathbb{R}^+} (u_j - w_j^\gamma) = \sup_{y \in \mathbb{R}^+} (u_i - w_i^\gamma) > 0. \tag{A.39}
\]

Let \(z = (x, y) \). Notice that \(u_i(z) - w_i^\gamma(z) \) goes to \(-\infty\) when \(|z|\) goes to infinity, as pointed out in Remark 3.6. We also have \(\lim_{y^0} u_i(x, y) - \lim_{y^0} w_i^\gamma(x, y) \leq 0 \) by assumption. Hence, by continuity of the functions \(u_i \) and \(w_i^\gamma \), there exists \(z_0 \in \mathbb{R} \times (0, \infty) \) s.t.

\[
\theta = u_i(z_0) - w_i^\gamma(z_0).
\]
For any \(\varepsilon > 0 \), we consider the functions
\[
\Phi_\varepsilon(z, z') = u_\varepsilon(z) - w_\varepsilon^\gamma(z') - \phi_\varepsilon(z, z'),
\]
\[
\phi_\varepsilon(z, z') = \frac{1}{4} |z - z_0|^4 + \frac{1}{2\varepsilon} |z - z'|^2,
\]
for all \(z, z' \in \mathbb{R} \times (0, \infty) \). By standard arguments of comparison principles, the function \(\Phi_\varepsilon \)
attains a maximum in \((z_\varepsilon, z'_\varepsilon) \in (\mathbb{R} \times (0, \infty))^2 \), which converges (up to a subsequence) to
\((z_0, z'_0) \) when \(\varepsilon \) goes to zero. Moreover,
\[
\lim_{\varepsilon \to 0} \frac{|z_\varepsilon - z'_\varepsilon|^2}{\varepsilon} = 0. \quad (A.40)
\]
Applying Theorem 3.2 of [7], we obtain the existence of \(2 \times 2 \) matrices \(M_\varepsilon = (M_{\varepsilon ij})_{1 \leq j, l \leq 2} \),
\(M'_\varepsilon = (M'_{\varepsilon ij})_{1 \leq j, l \leq 2} \) such that:
\[
(p_\varepsilon, M_\varepsilon) \in J^{2+, u_i}(z_\varepsilon),
\]
\[
(p'_\varepsilon, M'_\varepsilon) \in J^{2-, u_i^\gamma}(z'_\varepsilon),
\]
and
\[
\begin{pmatrix} M_\varepsilon & 0 \\ 0 & -M'_\varepsilon \end{pmatrix} \leq D^2_{z,z'} \phi_\varepsilon(z_\varepsilon, z'_\varepsilon) + \varepsilon \left(D^2_{z,z'} \phi_\varepsilon(z_\varepsilon, z'_\varepsilon) \right)^2, \quad (A.41)
\]
where
\[
p_\varepsilon = (p_{\varepsilon j})_{1 \leq j \leq 2} = D_{z} \phi_\varepsilon(z_\varepsilon, z'_\varepsilon),
\]
\[
p'_\varepsilon = (p'_{\varepsilon j})_{1 \leq j \leq 2} = -D_{z'} \phi_\varepsilon(z_\varepsilon, z'_\varepsilon).
\]
By writing the viscosity subsolution property of \(u_i \) and the strict viscosity supersolution
property (3.25) of \(u_i^\gamma \), we have the following inequalities:
\[
\min \left[-p_{\varepsilon 1} u_i(x_\varepsilon) - p_{\varepsilon 2} \alpha(y_\varepsilon) - \frac{1}{2} \sigma^2(x_\varepsilon) M_{\varepsilon 11} - \rho \gamma(y_\varepsilon) \sigma(x_\varepsilon) M_{\varepsilon 12} \\
- \frac{1}{2} \gamma^2(y_\varepsilon) M_{\varepsilon 22} - G_i u_i(x_\varepsilon, y_\varepsilon) - J_i u_i(i, x_\varepsilon, y_\varepsilon),
\right] \leq 0, \quad (A.42)
\]
\[
\min \left[-p'_{\varepsilon 1} u_i'(x'_\varepsilon) - p'_{\varepsilon 2} \alpha(y'_\varepsilon) - \frac{1}{2} \sigma^2(x'_\varepsilon) M'_{\varepsilon 11} - \rho \gamma(y'_\varepsilon) \sigma(x'_\varepsilon) M'_{\varepsilon 12} - \frac{1}{2} \gamma^2(y'_\varepsilon) M'_{\varepsilon 22} \\
- G_i u_i^\gamma(x'_\varepsilon, y'_\varepsilon) - J_i u_i^\gamma(i, x'_\varepsilon, y'_\varepsilon),
\right] \geq \delta. \quad (A.43)
\]
We then distinguish the following two cases:

* Case 1: \(u_i(x_\varepsilon, y_\varepsilon) - U(e^{x_\varepsilon} f(y_\varepsilon)) \leq 0 \) in (A.42).

From the continuity of \(u_i \) and by sending \(\varepsilon \to 0 \), this implies
\[
u_i(x_0, y_0) - U(e^{x_0} f(y_0)) \leq 0. \quad (A.44)
\]

On the other hand, from (A.43), we also have
\[
w_i^\gamma(x'_\varepsilon, y'_\varepsilon) - U(e^{x'_\varepsilon} f(y'_\varepsilon)) \geq \delta,
\]
which implies, by sending $\varepsilon \to 0$ and using the continuity of w_i:

$$w_i^\gamma(x_0, y_0) - U(e^{x_0} f(y_0)) \geq \delta. \quad (A.45)$$

Combining (A.44) and (A.45), we obtain

$$\theta = u_i(z_0) - w_i^\gamma(z_0) \leq -\delta,$$

which is a contradiction.

* Case 2 :

\[-p_{\varepsilon 1} \mu(x_\varepsilon) - p_{\varepsilon 2} \alpha(y_\varepsilon) - \frac{1}{2} \sigma^2(x_\varepsilon) M_{\varepsilon 11} - \rho \gamma(y_\varepsilon) \sigma(x_\varepsilon) M_{\varepsilon 12} - \frac{1}{2} \gamma^2(y_\varepsilon) M_{\varepsilon 22} - G_i w^\gamma(\cdot, x_\varepsilon, y_\varepsilon) - J_i w^\gamma(i, x_\varepsilon, y_\varepsilon) \leq 0 \text{ in } (A.42) \]

From (A.43), we have

\[\left[-p_{\varepsilon 1}' \mu(x_\varepsilon') - p_{\varepsilon 2}' \alpha(y_\varepsilon') - \frac{1}{2} \sigma^2(x_\varepsilon') M'_{\varepsilon 11} - \rho \gamma(y_\varepsilon') \sigma(x_\varepsilon') M'_{\varepsilon 12} - \frac{1}{2} \gamma^2(y_\varepsilon') M'_{\varepsilon 22} - G_i w^\gamma(\cdot, x_\varepsilon', y_\varepsilon') - J_i w^\gamma(i, x_\varepsilon', y_\varepsilon') \right] \geq \delta. \]

Combining the two above inequalities and using relation (A.41) and the continuity of u_i and w_i^γ, we obtain the required contradiction : $\delta \leq 0$. This ends the proof. \qed

B Confluent Hypergeometric Functions

In this appendix, we discuss the solution of the following class of ordinary differential equation:

$$y f''(y) + a(b - y) f'(y) + cf(y) + I(y) = 0. \quad (B.46)$$

We refer mainly to [21] for more complete details in the resolution of this type of equations. We start analyzing the associated homogeneous ED

$$y f_0''(y) + a(b - y) f_0'(y) + cf_0(y) = 0.$$

Let $J(A, C, y)$ be the solution of the confluent hypergeometric differential equation

$$y J''(A, C, y) + (C - y) J'(A, C, y) - AJ(A, C, y) = 0,$$

then, it is easy to verify that

$$f_0(y) = J\left(-\frac{c}{a}, ab, ay\right).$$

In the rest of this appendix, we will assume that $a, b, c \neq 0$ and $\frac{c}{a} \notin \mathbb{N}$. In the other cases, the solution is either polynomial and exponential functions or a linear combination of confluent hypergeometric functions of first kind. A direct application of the separation of variable method gives the following solution

$$f(y) = k f_0(y) + I(a, b, c, l(\cdot))(y) \quad (B.47)$$

27
where
\[
\begin{align*}
 h_0(y) &= \exp \left\{ \int^y a (b - z) f_0(z) + 2 z f'_0(z) \frac{dz}{z f_0(z)} \right\} \\
 h_1(y) &= - \int^y \frac{l(z)}{z h_0(z)} dz \\
 \mathcal{I}(a, b, c, l(\cdot))(y) &= \int^y (k_0 + h_1(z)) h_0(z) dz
\end{align*}
\]

with \(k\) and \(k_0\) constant.

\[
f(y) = J \left(-\frac{c}{a}, ab, ay \right) - \frac{d}{c}, \tag{B.48}
\]

The general solution \(J\) of the confluent hypergeometric differential equation is generally written as a linear combination of the Kummer function \(\Phi\) and the Tricomi function \(\Psi\).

We summarize here some properties of functions \(\Phi\) and \(\Psi\):

\[
\begin{align*}
 \Phi'(A, C, y) &= \frac{A}{C} \Phi(A + 1, C + 1, y) \\
 \Psi'(A, C, y) &= -A \Psi(A + 1, C + 1, y) \\
 \lim_{y \to 0} \Phi(A, C, y) &= 1 \\
 \lim_{y \to 0} \Psi(A, C, y) &\simeq \begin{cases} \\
 \frac{\Gamma(1-C)}{\Gamma(A-C+1)} & \text{if } C < 1 \\
 \frac{\Gamma(C-1)}{\Gamma(A)} y^{1-C} & \text{if } C > 1 \\
 \end{cases} \\
 \lim_{y \to \infty} \Phi(A, C, y) &\text{ does not exist} \\
 \lim_{y \to \infty} \Psi(A, C, y) &\simeq y^{-A}
\end{align*}
\]

B.1 system equations verified by the the parameters of value function

The following system of equations provides us with the values \((y_0^*, y_1^*, \hat{c}, \hat{d}, \hat{e}, \hat{f})\) needed to define completely the value function in Proposition 4.8.

The first equation is derived from the continuity of \(w(0, y)\) at \(y_0^*\):

\[
0 = \frac{\kappa + \lambda_0}{\kappa + \lambda_0 + \vartheta_0} y_0^* + \hat{c} \Phi \left(\frac{\lambda_0 + \vartheta_{0,1}}{\kappa}, \frac{2 \kappa \beta}{\gamma^2}, \frac{2 \kappa}{\gamma^2} y_0^* \right) + \hat{d} \Psi \left(\frac{\lambda_0 + \vartheta_{0,1}}{\kappa}, \frac{2 \kappa \beta}{\gamma^2}, \frac{2 \kappa}{\gamma^2} y_0^* \right) + \frac{\mu - \kappa \beta}{\lambda_0 + \vartheta_{0,1}} \tag{B.49a}
\]

The second equation is obtained from the continuity of the derivative of \(w(0, y)\) at \(y_0^*\):

\[
0 = \frac{\kappa + \lambda_0}{\kappa + \lambda_0 + \vartheta_{0,1}} \Phi \left(\frac{\lambda_0 + \vartheta_{0,1}}{\kappa}, 1, \frac{2 \kappa \beta}{\gamma^2}, 1, \frac{2 \kappa}{\gamma^2} y_0^* \right) - 2 \hat{d} \frac{\lambda_0 + \vartheta_{0,1}}{\gamma^2} \Psi \left(\frac{\lambda_0 + \vartheta_{0,1}}{\kappa}, 1, \frac{2 \kappa \beta}{\gamma^2}, 1, \frac{2 \kappa}{\gamma^2} y_0^* \right). \tag{B.49b}
\]
The third equation is obtained from the continuity of \(w(0, y) \) at \(y^*_1 \):

\[
0 = \frac{\partial_{y,0} - \partial_{y,0}}{\kappa + \lambda_0 + \partial_{y,0}} y^*_1 - \tilde{c}\Phi \left(\frac{\lambda_0 + \partial_{y,0}}{\kappa}, \frac{2 \kappa \beta}{\gamma^2}, \frac{2 \kappa}{\gamma^2} y^*_1 \right)
- d\Psi \left(\frac{\lambda_0 + \partial_{y,0}}{\kappa}, \frac{2 \kappa \beta}{\gamma^2}, \frac{2 \kappa}{\gamma^2} y^*_1 \right)
- \lambda_0 + \partial_{y,0} - \lambda_0 + \partial_{y,0} - \kappa \beta \lambda_0 = \mu \frac{\partial_{y,0}}{\kappa + \lambda_0 + \partial_{y,0}}.
\] (B.49c)

The fourth equation is obtained from the continuity of the derivative of \(w(0, y) \) at \(y^*_1 \):

\[
0 = \frac{\partial_{y,0}}{\kappa + \lambda_0 + \partial_{y,0}} - \tilde{c} \frac{\lambda_0 + \partial_{y,0}}{\kappa} \Phi \left(\frac{\lambda_0 + \partial_{y,0}}{\kappa}, 1, \frac{2 \kappa \beta}{\gamma^2} + 1, \frac{2 \kappa}{\gamma^2} y^*_1 \right)
+ 2 d \lambda_0 \frac{\lambda_0 + \partial_{y,0}}{\kappa} \Psi \left(\frac{\lambda_0 + \partial_{y,0}}{\kappa}, 1, \frac{2 \kappa \beta}{\gamma^2} + 1, \frac{2 \kappa}{\gamma^2} y^*_1 \right)
- 2 \tilde{c} 0 \frac{\lambda_0}{\gamma^2} \Psi \left(\frac{\lambda_0}{\kappa} + 1, \frac{2 \kappa \beta}{\gamma^2} + 1, \frac{2 \kappa}{\gamma^2} y^*_1 \right)
- 2 \tilde{c} 0 \frac{\lambda_0}{\gamma^2} \Psi \left(\frac{\lambda_0}{\kappa} + 1, \frac{2 \kappa \beta}{\gamma^2} + 1, \frac{2 \kappa}{\gamma^2} y^*_1 \right).
\] (B.49d)

The fifth equation gives the continuity of \(w(1, y) \) at \(y^*_1 \):

\[
0 = y^*_1 + p_0 \frac{\tilde{c}\Psi}{\lambda_0} \left(\frac{\lambda_0 + \partial_{y,0}}{\kappa}, \frac{2 \kappa \beta}{\gamma^2}, \frac{2 \kappa}{\gamma^2} y^*_1 \right) + \frac{\mu}{\lambda_0}
+ p_0 \left(\tilde{c}\Psi \left(\frac{\lambda_1}{\kappa}, \frac{2 \kappa \beta}{\gamma^2}, \frac{2 \kappa}{\gamma^2} y^*_1 \right) + \frac{\mu}{\lambda_1} \right).
\] (B.49e)

The sixth equation gives the continuity of the derivative of \(w(1, y) \) at \(y^*_1 \):

\[
1 = 2 p_0 \frac{\tilde{c}\Psi}{\lambda_0} \left(\frac{\lambda_0}{\kappa} + 1, \frac{2 \kappa \beta}{\gamma^2} + 1, \frac{2 \kappa}{\gamma^2} y^*_1 \right)
+ 2 \tilde{c} 1 \frac{\lambda_1}{\gamma^2} \Psi \left(\frac{\lambda_1}{\kappa} + 1, \frac{2 \kappa \beta}{\gamma^2} + 1, \frac{2 \kappa}{\gamma^2} y^*_1 \right).
\] (B.49f)

References

